期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于HU-ResNet的混凝土表观裂缝信息提取 被引量:10
1
作者 徐国整 廖晨聪 +2 位作者 陈锦剑 董斌 周越 《计算机工程》 CAS CSCD 北大核心 2020年第11期279-285,共7页
针对混凝土结构表观裂缝检测准确率低、细节信息丢失及精度不高等问题,提出一种利用HU-ResNet卷积神经网络的混凝土表观裂缝检测方法。基于改进U-Net网络建立HU-ResNet模型,采用经ImageNet预训练的ResNet34残差网络作为编码器,以保留裂... 针对混凝土结构表观裂缝检测准确率低、细节信息丢失及精度不高等问题,提出一种利用HU-ResNet卷积神经网络的混凝土表观裂缝检测方法。基于改进U-Net网络建立HU-ResNet模型,采用经ImageNet预训练的ResNet34残差网络作为编码器,以保留裂缝细节信息并加速网络收敛,引入scSE注意力机制模块在空间和通道重新标定编码块与解码块的输出特征,并利用超柱模块融合解码器各阶段所输出特征图获取更精确的裂缝图像语义信息和定位,同时采用组合损失函数进一步提高裂缝图像精度。实验结果表明,该模型的像素准确率、交并比和F1值分别达到0.9904、0.6933和0.8166,优于Canny、区域生长等传统数字图像模型和FCN8s、U-Net、U-ResNet等深度学习模型且裂缝检测更精准。 展开更多
关键词 混凝土表观裂缝 HU-ResNet卷积神经网络 组合损失函数 scSE模块 超柱模块
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部