Polyethylene glycol(PEG) membranes with different molecular mass cut-offs were used to treat oil/water emulsion, and the effects of experimental conditions including pressure, temperature and different opera- ting mod...Polyethylene glycol(PEG) membranes with different molecular mass cut-offs were used to treat oil/water emulsion, and the effects of experimental conditions including pressure, temperature and different opera- ting modes on permeate flux and removal rate of chemical oxygen demand (COD_ Cr) were studied. The results show that the permeate flux of ultrafiltration membrane is influenced by pressure and temperature; practical pressure is chosen to be 0.30.7MPa for the PEG with molecular mass cut-offs of 8000 and 0.71.0 MPa for the PEG with molecular mass cut-offs of 2500; and the practical temperature is chosen to be 2532℃. Different operating modes of ultrafiltration also influence the permeate flux and removal rate of COD_ Cr. The ultrafiltration membrane of intermittent cross-flow operating mode is easier to be influenced by blocky polarization and contamination than that of sequential cross-flow operating mode. Removal rate of COD_ Cr in intermittent cross-flow and sequential cross-flow condition can be maintained at about 93%.展开更多
文摘Polyethylene glycol(PEG) membranes with different molecular mass cut-offs were used to treat oil/water emulsion, and the effects of experimental conditions including pressure, temperature and different opera- ting modes on permeate flux and removal rate of chemical oxygen demand (COD_ Cr) were studied. The results show that the permeate flux of ultrafiltration membrane is influenced by pressure and temperature; practical pressure is chosen to be 0.30.7MPa for the PEG with molecular mass cut-offs of 8000 and 0.71.0 MPa for the PEG with molecular mass cut-offs of 2500; and the practical temperature is chosen to be 2532℃. Different operating modes of ultrafiltration also influence the permeate flux and removal rate of COD_ Cr. The ultrafiltration membrane of intermittent cross-flow operating mode is easier to be influenced by blocky polarization and contamination than that of sequential cross-flow operating mode. Removal rate of COD_ Cr in intermittent cross-flow and sequential cross-flow condition can be maintained at about 93%.