The formation and qualification of redox sites in transition metal oxides are always the active fields related to electronics, catalysis, sensors, and energy-storage units. In the present study, the temperature depend...The formation and qualification of redox sites in transition metal oxides are always the active fields related to electronics, catalysis, sensors, and energy-storage units. In the present study, the temperature dependence of thermal reduction of MoO3 was surveyed at the range of 350℃ to 750℃. Upon reduction, the formed redox species characterized by EPR spectroscopy are the MoVion and superoxide anion radical (O2-) when the reduction was induced at the optimal temperature of 300-350℃. When heating-up from 350℃, the EPR signals started to decline in amplitude. The signals in the range of 400-450℃ decreased to half of that at 350℃, and then to zero at ~600℃. Further treatment at even higher temperature or prolonged heating time at 500℃ caused more reduction and more free electrons were released to the MoO3 bulk, which results in a delocalized means similar to the antiferromagnetic coupling. These data herein are helpful to prepare and study the metal-oxide catalysts.展开更多
Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superd...Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superdense coding by means of bichromatic radiation method. Experimental feasibility and reliability for achieving our schemes is discussed in detail.展开更多
Hydroxyl radicals, superoxide anions and nitricoxide radicals are reactive species that can attack biomolecules such as DNA, lipids and proteins to cause many lifestyle-related diseases including hypertension and phot...Hydroxyl radicals, superoxide anions and nitricoxide radicals are reactive species that can attack biomolecules such as DNA, lipids and proteins to cause many lifestyle-related diseases including hypertension and photoaging. This study reports the synthesis of new copper-pyridoxine and iron-pyridoxine complexes. The complexes have been synthesized and characterized by molar conductances, IR, UV-Visible, mass spectrometry, melting points and magnetic moment datas. The molecular formula of the complex is found to be Fe(py ^-)2Cl.H2O. The pyH/pyligand is coordinated to copper and iron through N atom of the pyridine ring and O atom of 5'-CH2OH group. The Fe(III) complex is found to be paramagnetic with one unpaired electron. The antioxidant activities of the free ligand and its complexes were determined in vitro.展开更多
The nonlinear characteristics of the dust acoustic(DA)waves are studied in a homogeneous,collisionless,unmagnetized,and dissipative dusty plasma composed of negatively charged dusty grains,superthermal electrons,and n...The nonlinear characteristics of the dust acoustic(DA)waves are studied in a homogeneous,collisionless,unmagnetized,and dissipative dusty plasma composed of negatively charged dusty grains,superthermal electrons,and nonextensive ions.Sagdeev pseudopotential technique has been employed to study the large amplitude DA waves.It(Sagdeev pseudopotential)has an evidence for the existence of compressive and rarefractive solitons.The global features of the phase portrait are investigated to understand the possible types of solutions of the Sagdeev form.On the other hand,the reductive perturbation technique has been used to study small amplitude DA waves and yields the Korteweg-de Vries-Burgers(Kd V-Burgers)equation that exhibits both soliton and shock waves.The behavior of the obtained results of both large and small amplitude is investigated graphically in terms of the plasma parameters like dust kinematic viscosity,superthermal and nonextensive parameters.展开更多
The nonlinear aspects of nonplanar dust acoustic (DA) solitary waves are investigated in an unmagnetized complex plasma comprising of cold dust grains,kappa-distributed ions as well as electrons.The nonplanar DA solit...The nonlinear aspects of nonplanar dust acoustic (DA) solitary waves are investigated in an unmagnetized complex plasma comprising of cold dust grains,kappa-distributed ions as well as electrons.The nonplanar DA solitons are studied based on the reductive perturbation technique.It is shown that the evolution of DA solitons is governed by a spherical Kadomtsev-Petviashvili (sKP) equation and then the impact of suprathermality on the spatial structure as well as the nature of DA soliton is studied.It seems that the properties of DA solitons in nonplanar geometry are quite different from that of the planar solitons.展开更多
基金supported by the National Key R&D Program of China(No.2018YFA0306600)AnHui Initiative in Quantum Information Technologies(No.AHY050000)
文摘The formation and qualification of redox sites in transition metal oxides are always the active fields related to electronics, catalysis, sensors, and energy-storage units. In the present study, the temperature dependence of thermal reduction of MoO3 was surveyed at the range of 350℃ to 750℃. Upon reduction, the formed redox species characterized by EPR spectroscopy are the MoVion and superoxide anion radical (O2-) when the reduction was induced at the optimal temperature of 300-350℃. When heating-up from 350℃, the EPR signals started to decline in amplitude. The signals in the range of 400-450℃ decreased to half of that at 350℃, and then to zero at ~600℃. Further treatment at even higher temperature or prolonged heating time at 500℃ caused more reduction and more free electrons were released to the MoO3 bulk, which results in a delocalized means similar to the antiferromagnetic coupling. These data herein are helpful to prepare and study the metal-oxide catalysts.
文摘Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superdense coding by means of bichromatic radiation method. Experimental feasibility and reliability for achieving our schemes is discussed in detail.
文摘Hydroxyl radicals, superoxide anions and nitricoxide radicals are reactive species that can attack biomolecules such as DNA, lipids and proteins to cause many lifestyle-related diseases including hypertension and photoaging. This study reports the synthesis of new copper-pyridoxine and iron-pyridoxine complexes. The complexes have been synthesized and characterized by molar conductances, IR, UV-Visible, mass spectrometry, melting points and magnetic moment datas. The molecular formula of the complex is found to be Fe(py ^-)2Cl.H2O. The pyH/pyligand is coordinated to copper and iron through N atom of the pyridine ring and O atom of 5'-CH2OH group. The Fe(III) complex is found to be paramagnetic with one unpaired electron. The antioxidant activities of the free ligand and its complexes were determined in vitro.
文摘The nonlinear characteristics of the dust acoustic(DA)waves are studied in a homogeneous,collisionless,unmagnetized,and dissipative dusty plasma composed of negatively charged dusty grains,superthermal electrons,and nonextensive ions.Sagdeev pseudopotential technique has been employed to study the large amplitude DA waves.It(Sagdeev pseudopotential)has an evidence for the existence of compressive and rarefractive solitons.The global features of the phase portrait are investigated to understand the possible types of solutions of the Sagdeev form.On the other hand,the reductive perturbation technique has been used to study small amplitude DA waves and yields the Korteweg-de Vries-Burgers(Kd V-Burgers)equation that exhibits both soliton and shock waves.The behavior of the obtained results of both large and small amplitude is investigated graphically in terms of the plasma parameters like dust kinematic viscosity,superthermal and nonextensive parameters.
文摘The nonlinear aspects of nonplanar dust acoustic (DA) solitary waves are investigated in an unmagnetized complex plasma comprising of cold dust grains,kappa-distributed ions as well as electrons.The nonplanar DA solitons are studied based on the reductive perturbation technique.It is shown that the evolution of DA solitons is governed by a spherical Kadomtsev-Petviashvili (sKP) equation and then the impact of suprathermality on the spatial structure as well as the nature of DA soliton is studied.It seems that the properties of DA solitons in nonplanar geometry are quite different from that of the planar solitons.