A comprehensive analysis of liquid fuel droplet evaporation at supercritical conditions is performed.The numerical model is based on complete time-dependent conservation equations,with a full account of variable therm...A comprehensive analysis of liquid fuel droplet evaporation at supercritical conditions is performed.The numerical model is based on complete time-dependent conservation equations,with a full account of variable thermophysical properties and vapor-liquid interfacial thermodynamics.And the model employs the Peng-Robinson(PR)equation of state(EOS).As a specific example,problems involving n-heptane droplet in nitrogen gas are investigated.The results indicate that the increase of ambient pressure and temperature results in the increase of surface temperature rise rate and surface regression rate.The transition from subcritical state to supercritical state can occur at the droplet surface when the droplet evaporates in a strongly supercritical environment.展开更多
基金supported by the National Natural Science Foundation of China(Grant No,50376003)
文摘A comprehensive analysis of liquid fuel droplet evaporation at supercritical conditions is performed.The numerical model is based on complete time-dependent conservation equations,with a full account of variable thermophysical properties and vapor-liquid interfacial thermodynamics.And the model employs the Peng-Robinson(PR)equation of state(EOS).As a specific example,problems involving n-heptane droplet in nitrogen gas are investigated.The results indicate that the increase of ambient pressure and temperature results in the increase of surface temperature rise rate and surface regression rate.The transition from subcritical state to supercritical state can occur at the droplet surface when the droplet evaporates in a strongly supercritical environment.