An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,an...An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal.展开更多
To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31...To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31 alloy by using in-situ growth method followed by surface modification with stearic acid. The characteristics of different coatings were investigated by XRD, SEM and EDS. The effect of the hydrothermal treatment time on the formation of the LDH coatings was studied. The results demonstrated that the micro-pores and cracks of MAO coating were gradually sealed via in-situ growing LDH with prolonging hydrothermal treating time. Electrochemical measurement displayed that the lowest corrosion current density, the most positive corrosion potential and the highest impedance modulus were observed for superhydrophobic LDH/MAO coating compared with those of MAO coating and LDH/MAO coating. Immersion experiment proved that the superhydrophobic LDH/MAO coating with the active anti-corrosion capability significantly enhanced the long-term corrosion protection for MAO coated alloy.展开更多
In order to improve the corrosion resistance of the Mg alloys, the superhydrophobic coatings on AZ31 Mg alloy wereprepared by a two-step process of micro-arc oxidation treatment and superhydrophobic treatment in stear...In order to improve the corrosion resistance of the Mg alloys, the superhydrophobic coatings on AZ31 Mg alloy wereprepared by a two-step process of micro-arc oxidation treatment and superhydrophobic treatment in stearic acid ethanol solution. Theeffects of voltages, frequencies and treatment time on the contact angle of the superhydrophobic treated sample were investigated.The results showed that with increasing the voltage, frequency and treatment time, all of the contact angles of the superhydrophobictreated sample increased first, and then decreased, reaching the maximum values at 350 V, 1000 Hz and 5 min, respectively. Theoptimal superhydrophobic coating was mainly composed of MgO and Mg2SiO4 phases, with the pore diameter of ~900 nm, thethickness of ~6.86 μm and the contact angle of 156.96°. The corrosion current density of the superhydrophobic AZ31 sampledecreased by three orders of magnitude, and the amount of hydrogen evolution decreased by 94.77% compared with that of the AZ31substrate sample.展开更多
Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-ici...Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-icing surfaces have gained great attention recently due to their low-hysteresis,non-stick properties,slow nucleation rate and low ice adhesion strength.These bio-inspired anti-icing surfaces,such as superhydrophobic surfaces,slippery liquid-infused porous surfaces and quasi-liquid film surfaces,have realized excellent anti-icing performance at various stages of icing.However,for harsh environment,there are still many problems and challenges.From the perspective of bioinspiration,the mechanism of icing nucleation,liquid bounce and ice adhesion has been reviewed together with the application progress and bottleneck issues about anti-icing in view of the process of icing.Subsequently,the reliability and development prospect of active,passive and active-passive integrated anti-icing technology are discussed,respectively.展开更多
The capability to design and modulate materials, shapes, heat transfer, and mass mixing during the process of developing chemical reactors has allowed researchers to explore millions of chemical reactions and assays. ...The capability to design and modulate materials, shapes, heat transfer, and mass mixing during the process of developing chemical reactors has allowed researchers to explore millions of chemical reactions and assays. However, despite the advantages in engineering array-based microreactors or microfluidic systems, the wetting attachment between solutions of reagents/products and the glass or polymer substrates of containers leads to difficulties in collecting products effectively and preventing channel blockage. Herein we present a miniature droplet reactor which takes advantage of the anti-wetting and low-adhesive properties of nanoparticle-derived superhydrophobic pedestals, allowing aqueous droplets to be manipulated freely but also providing a confined environment for performing a series of aqueous phase chemical reactions on a small scale. Gas- or precipitate- forming reactions can also be performed inside this miniature reactor. Most importantly, reaction products in liquid, solid or gaseous states can be collected effectively, which allows the harvesting of valuable products formed in limited amounts. Such a miniature reactor built on superhydrophobic pedestals provides a new way of performing common chemical reactions and may open the door to the design of next-generation microreaction systems.展开更多
With properties of complete degradation and favorable mechanical behavior, Mg and its alloys are regarded as the next generation medical metal materials. However, fast degradation and poor surface biocompatibility hin...With properties of complete degradation and favorable mechanical behavior, Mg and its alloys are regarded as the next generation medical metal materials. However, fast degradation and poor surface biocompatibility hinder their clinical applications. Inspired by the "petal effect", we successfully constructed a superhydrophobic and highly adhesive coating on pure Mg via a simple hydrothermal treatment in a solution containing sodium oleate. The superhydrophobicity of the fabricated coating results from its flake-like micro-nanostructure and the low-surface-energy oleate group. Water droplet on the superhydrophobic coating cannot roll off even when the sample is turned upside down, owing to the sealed air-pockets and the van der Waals’ attraction at the solidliquid interface, indicating a highly adhesive force. The chemical and mechanical stability of the superhydrophobic coating were measured. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements suggest enhanced corrosion resistance of the as-prepared sample.Furthermore, cell cytotoxicity, migration and adhesion data of human umbilical vein endothelial cells(HUVECs) reveal an improved cytocompatibility of the modified surface. Finally,hemolysis assay and platelet adhesion assay suggest an improved hemocompatibility. It is believed that the facile and low-cost method can expand the new application of superhydrophobic surface with highly adhesive on Mg in biomedical fields.展开更多
Superhydrophobic and superhydrophilic surfaces have been extensively inves- tigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive...Superhydrophobic and superhydrophilic surfaces have been extensively inves- tigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°-155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable promising solution for their long-term irradiations. superhydrophobic surfaces provides a service under UV or strong solar light展开更多
Wearable electronic devices have received increasing interests because of their excellent flexibility,stretchability,and human friendliness.As the core components,flexible strain sensors integrated with wide working r...Wearable electronic devices have received increasing interests because of their excellent flexibility,stretchability,and human friendliness.As the core components,flexible strain sensors integrated with wide working range,high sensitivity,and environment stability,especially in moisture or corrosive environments,remain a huge challenge.Herein,synergistic carbon nanotubes(CNTs)/reduced graphene oxide(rGO)dual conductive layer decorated elastic rubber band(RB)was successfully developed and treated with hydrophobic fumed silica(Hf-SiO_(2))for preparing superhydrophobic strain sensor.As expected,stable entangled CNTs layer and ultrasensitive microcracked rGO layer endow the sensor with extremely low detection limit(0.1%),high sensitivity(gauge factor is 685.3 at 482%strain),wide workable strain range(0–482%),fast response/recovery(200 ms/200 ms)and favorable reliability and reproducibility over 1000 cycles.Besides,the constructed Hf-SiO_(2) coating also makes the sensor exhibit excellent superhydrophobicity,self-cleaning property,and corrosion-resistance.As a proof of concept,our prepared high-performance strain sensor can realize the full-range monitoring of human motions and physiological signals even in the water environment,including pulse,vocalization,joint bending,running,and gesture recognition.Interestingly,it can also be knitted into a tactile electronic textile for spatial pressure distribution measurement.Thus,this study provides a universal technique for the preparation of high-performance strain sensors with great potential applications in the field of next-generation intelligent wearable electronics.展开更多
A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nano...A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nanofibers with controlled diameter and length are prepared on polymer surfaces. The whole fabrication process is completed in ~30 s and equally applicable to polymers of different crystalline structures. The wettability of the as-fabricated polymer surfaces (being hydrophilic, hydro- phobic, highly hydrophobic or even superhydrophobic) is readily regulated by adjusting the welding time from 0 s to a maxi- mum of 10 s. Our approach can be a promising industrial basis for manufacturing functional nanomaterials in the fields of electronics, optics, sensors, biology, medicine, coating, or fluidic technologies.展开更多
基金financial support from the Public Welfare Projects of Zhejiang Province,China(No.LGG22E010002)the National Natural Science Foundation of China(Nos.52001300,52171083)。
文摘An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal.
基金Project(17JS083) supported by the Key Laboratory Program of Shaanxi Education Department,ChinaProject(2016JZ018) supported by the Key Program of Natural Science Research of Shaanxi Province,ChinaProject(51701162) supported by the National Natural Science Foundation of China
文摘To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31 alloy by using in-situ growth method followed by surface modification with stearic acid. The characteristics of different coatings were investigated by XRD, SEM and EDS. The effect of the hydrothermal treatment time on the formation of the LDH coatings was studied. The results demonstrated that the micro-pores and cracks of MAO coating were gradually sealed via in-situ growing LDH with prolonging hydrothermal treating time. Electrochemical measurement displayed that the lowest corrosion current density, the most positive corrosion potential and the highest impedance modulus were observed for superhydrophobic LDH/MAO coating compared with those of MAO coating and LDH/MAO coating. Immersion experiment proved that the superhydrophobic LDH/MAO coating with the active anti-corrosion capability significantly enhanced the long-term corrosion protection for MAO coated alloy.
基金Project(51101085)supported by the National Natural Science Foundation of ChinaProject(2016BAB206109)supported by the Natural Science Foundation of Jiangxi Province,China+6 种基金Project(BK20151291)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(BRA2015377)supported by the 333 Project of Jiangsu Province,ChinaProject(20151BBG70039)supported by the Science and Technology Support Plan of Jiangxi Province,ChinaProject(GJJ150721)supported by the Science and Technology Project of Jiangxi Province Education Department,ChinaProject(HAG201601)supported by the Foundation of Huaian Science and Technology,ChinaProject(HAC2015026)supported by the Huaian International Cooperation Program,ChinaProject(jr1416)supported by the Foundation of Jiangsu Provincial Key Laboratory for Interventional Medical Devices,China
文摘In order to improve the corrosion resistance of the Mg alloys, the superhydrophobic coatings on AZ31 Mg alloy wereprepared by a two-step process of micro-arc oxidation treatment and superhydrophobic treatment in stearic acid ethanol solution. Theeffects of voltages, frequencies and treatment time on the contact angle of the superhydrophobic treated sample were investigated.The results showed that with increasing the voltage, frequency and treatment time, all of the contact angles of the superhydrophobictreated sample increased first, and then decreased, reaching the maximum values at 350 V, 1000 Hz and 5 min, respectively. Theoptimal superhydrophobic coating was mainly composed of MgO and Mg2SiO4 phases, with the pore diameter of ~900 nm, thethickness of ~6.86 μm and the contact angle of 156.96°. The corrosion current density of the superhydrophobic AZ31 sampledecreased by three orders of magnitude, and the amount of hydrogen evolution decreased by 94.77% compared with that of the AZ31substrate sample.
基金financially supported by the National Natural Science Foundation of China(Nos.T2121003,51725501,51935001,52205297).
文摘Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-icing surfaces have gained great attention recently due to their low-hysteresis,non-stick properties,slow nucleation rate and low ice adhesion strength.These bio-inspired anti-icing surfaces,such as superhydrophobic surfaces,slippery liquid-infused porous surfaces and quasi-liquid film surfaces,have realized excellent anti-icing performance at various stages of icing.However,for harsh environment,there are still many problems and challenges.From the perspective of bioinspiration,the mechanism of icing nucleation,liquid bounce and ice adhesion has been reviewed together with the application progress and bottleneck issues about anti-icing in view of the process of icing.Subsequently,the reliability and development prospect of active,passive and active-passive integrated anti-icing technology are discussed,respectively.
基金The authors are grateful for a grant from the Major State Basic Research Development Program (No. 2007CB936403), the National Natural Science Foundation of China (No. 20571077), and the China Postdoctoral Science Foundation (No. 20100470557).
文摘The capability to design and modulate materials, shapes, heat transfer, and mass mixing during the process of developing chemical reactors has allowed researchers to explore millions of chemical reactions and assays. However, despite the advantages in engineering array-based microreactors or microfluidic systems, the wetting attachment between solutions of reagents/products and the glass or polymer substrates of containers leads to difficulties in collecting products effectively and preventing channel blockage. Herein we present a miniature droplet reactor which takes advantage of the anti-wetting and low-adhesive properties of nanoparticle-derived superhydrophobic pedestals, allowing aqueous droplets to be manipulated freely but also providing a confined environment for performing a series of aqueous phase chemical reactions on a small scale. Gas- or precipitate- forming reactions can also be performed inside this miniature reactor. Most importantly, reaction products in liquid, solid or gaseous states can be collected effectively, which allows the harvesting of valuable products formed in limited amounts. Such a miniature reactor built on superhydrophobic pedestals provides a new way of performing common chemical reactions and may open the door to the design of next-generation microreaction systems.
基金financially supported by the Distinguished Young Scholars of China(51525207)the National Natural Science Foundation of China(31570973)+1 种基金the National Key Research and Development Program of China(2016YFC1100604)Shanghai Committee of Science and Technology,China(15441904900)
文摘With properties of complete degradation and favorable mechanical behavior, Mg and its alloys are regarded as the next generation medical metal materials. However, fast degradation and poor surface biocompatibility hinder their clinical applications. Inspired by the "petal effect", we successfully constructed a superhydrophobic and highly adhesive coating on pure Mg via a simple hydrothermal treatment in a solution containing sodium oleate. The superhydrophobicity of the fabricated coating results from its flake-like micro-nanostructure and the low-surface-energy oleate group. Water droplet on the superhydrophobic coating cannot roll off even when the sample is turned upside down, owing to the sealed air-pockets and the van der Waals’ attraction at the solidliquid interface, indicating a highly adhesive force. The chemical and mechanical stability of the superhydrophobic coating were measured. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements suggest enhanced corrosion resistance of the as-prepared sample.Furthermore, cell cytotoxicity, migration and adhesion data of human umbilical vein endothelial cells(HUVECs) reveal an improved cytocompatibility of the modified surface. Finally,hemolysis assay and platelet adhesion assay suggest an improved hemocompatibility. It is believed that the facile and low-cost method can expand the new application of superhydrophobic surface with highly adhesive on Mg in biomedical fields.
基金Acknowledgements This work was supported by the Australian Research Council (ARC) Discovery Project No. DP1096546. ZQS was supported by an ARC Postdoctoral (APD) Research Fellowship and a University of Wollongong (UOW) Vice-chancellor's Research Fellowship. TL acknowledges the support of a University of Queensland (UQ) Postdoctoral Fellowship. KSL and LJ appreciate the financial support of the National Natural Science Foundation of China (Nos. 21273016, 21001013, and 20974113), the National Basic Research Program of China (No. 2013CB933003), the Program for New Century Excellent Talents in Universities, Beijing Natural Science Foundation (No. 2122035), and the Key Research Program of the Chinese Academy of Sciences (No. KJZDEW-M01).
文摘Superhydrophobic and superhydrophilic surfaces have been extensively inves- tigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°-155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable promising solution for their long-term irradiations. superhydrophobic surfaces provides a service under UV or strong solar light
基金supported by the National Natural Science Foundation of China(12072325)the National Key R&D Program of China(2019YFA0706802)the 111 Project(D18023)。
文摘Wearable electronic devices have received increasing interests because of their excellent flexibility,stretchability,and human friendliness.As the core components,flexible strain sensors integrated with wide working range,high sensitivity,and environment stability,especially in moisture or corrosive environments,remain a huge challenge.Herein,synergistic carbon nanotubes(CNTs)/reduced graphene oxide(rGO)dual conductive layer decorated elastic rubber band(RB)was successfully developed and treated with hydrophobic fumed silica(Hf-SiO_(2))for preparing superhydrophobic strain sensor.As expected,stable entangled CNTs layer and ultrasensitive microcracked rGO layer endow the sensor with extremely low detection limit(0.1%),high sensitivity(gauge factor is 685.3 at 482%strain),wide workable strain range(0–482%),fast response/recovery(200 ms/200 ms)and favorable reliability and reproducibility over 1000 cycles.Besides,the constructed Hf-SiO_(2) coating also makes the sensor exhibit excellent superhydrophobicity,self-cleaning property,and corrosion-resistance.As a proof of concept,our prepared high-performance strain sensor can realize the full-range monitoring of human motions and physiological signals even in the water environment,including pulse,vocalization,joint bending,running,and gesture recognition.Interestingly,it can also be knitted into a tactile electronic textile for spatial pressure distribution measurement.Thus,this study provides a universal technique for the preparation of high-performance strain sensors with great potential applications in the field of next-generation intelligent wearable electronics.
基金supported by the National Natural Science Foundation of China(Grant No.21374088)the grant from the Program for New Century Excellent Talents of Ministry of Education(Grant No.NCET-13-0476)+1 种基金the Program of Youth Science and Technology Nova of Shaanxi Province of China(Grant No.2013KJXX-21)the Program of New Staff and Research Area Project of NPU(Grant No.13GH014602)
文摘A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nanofibers with controlled diameter and length are prepared on polymer surfaces. The whole fabrication process is completed in ~30 s and equally applicable to polymers of different crystalline structures. The wettability of the as-fabricated polymer surfaces (being hydrophilic, hydro- phobic, highly hydrophobic or even superhydrophobic) is readily regulated by adjusting the welding time from 0 s to a maxi- mum of 10 s. Our approach can be a promising industrial basis for manufacturing functional nanomaterials in the fields of electronics, optics, sensors, biology, medicine, coating, or fluidic technologies.