The post structure aligned carbon nanotube(ACNT) film was prepared by CVD. it was a ultra-hydrophobic film with a higher contact angle(166°) and lower sliding angle(less than 3°). The post structure ACNT fil...The post structure aligned carbon nanotube(ACNT) film was prepared by CVD. it was a ultra-hydrophobic film with a higher contact angle(166°) and lower sliding angle(less than 3°). The post structure ACNT film showed discrete pillar composed of carbon nanotubes, these pillar formed microstructure in the film, which affected both the contact angle and the sliding angle.展开更多
Wettability is a very important property governed by both the chemical composition and the geometrical structure of solid surfaces. Super-hydrophobic surface[with water contact angle(CA) larger than 150°] have be...Wettability is a very important property governed by both the chemical composition and the geometrical structure of solid surfaces. Super-hydrophobic surface[with water contact angle(CA) larger than 150°] have been extensively investigated due to their importance for industrial applications. In the present study, we describe a rather simple method for synthesizing separated alignments of polymer nanopole films, which has super-hydrophobic property with water a contact angle as high as 152.0°. Nanostructures that induce the large fraction of air on the surface cause this unique property.展开更多
Well oriented ZnO nanorod array films were prepared by a low cost and low temperature hydrothermal approach. The wettability of the films were studied. The films treated with octadecanethiol(ODT) possess super hydroph...Well oriented ZnO nanorod array films were prepared by a low cost and low temperature hydrothermal approach. The wettability of the films were studied. The films treated with octadecanethiol(ODT) possess super hydrophobic properties. The static contact angle for water of the ODT modified films is 155.3°±2.3°, and the advancing and receding angles are 156.5°±1.9° and 150.3°±2.8°, respectively. It is believed that the super hydrophobic property of the ZnO nanorod array films is mainly caused by the nanostructures of the films and the modification of ODT adsorption layer on ZnO surfaces.展开更多
文摘The post structure aligned carbon nanotube(ACNT) film was prepared by CVD. it was a ultra-hydrophobic film with a higher contact angle(166°) and lower sliding angle(less than 3°). The post structure ACNT film showed discrete pillar composed of carbon nanotubes, these pillar formed microstructure in the film, which affected both the contact angle and the sliding angle.
文摘Wettability is a very important property governed by both the chemical composition and the geometrical structure of solid surfaces. Super-hydrophobic surface[with water contact angle(CA) larger than 150°] have been extensively investigated due to their importance for industrial applications. In the present study, we describe a rather simple method for synthesizing separated alignments of polymer nanopole films, which has super-hydrophobic property with water a contact angle as high as 152.0°. Nanostructures that induce the large fraction of air on the surface cause this unique property.
文摘Well oriented ZnO nanorod array films were prepared by a low cost and low temperature hydrothermal approach. The wettability of the films were studied. The films treated with octadecanethiol(ODT) possess super hydrophobic properties. The static contact angle for water of the ODT modified films is 155.3°±2.3°, and the advancing and receding angles are 156.5°±1.9° and 150.3°±2.8°, respectively. It is believed that the super hydrophobic property of the ZnO nanorod array films is mainly caused by the nanostructures of the films and the modification of ODT adsorption layer on ZnO surfaces.