期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进CURE聚类算法的网络用户异常行为识别方法
被引量:
1
1
作者
许馨元
李越鹏
王媛媛
《微型电脑应用》
2023年第5期174-177,181,共5页
由于传统异常行为识别方法无法对随时变化的异常行为实现精准识别,因此对CURE聚类算法作出改进,针对网络用户异常行为提出了一种新的识别方法。通过改进CURE聚类算法将用户的上网行为分为正常行为簇和异常行为簇,标记正常行为簇,并利用...
由于传统异常行为识别方法无法对随时变化的异常行为实现精准识别,因此对CURE聚类算法作出改进,针对网络用户异常行为提出了一种新的识别方法。通过改进CURE聚类算法将用户的上网行为分为正常行为簇和异常行为簇,标记正常行为簇,并利用超矩形建模方式识别数据,分析正常行为簇在每个维度上的正常值域,判断其是否包含在所建立的超矩形内。如果在判定用户行为为正常,反之判断其为异常行为。仿真实验选取了学生上网行为数据,分四个时间段注入异常行为数据,结果表明,所提方法识别结果与设定情况一致,没有出现误识别或不识别现象,改进CURE聚类算法的网络用户异常行为识别精度较高,而且具有超高的效率。
展开更多
关键词
改进CURE聚类算法
注入异常数据
超矩形建模
识别
模
型
正常行为
下载PDF
职称材料
题名
基于改进CURE聚类算法的网络用户异常行为识别方法
被引量:
1
1
作者
许馨元
李越鹏
王媛媛
机构
中国移动通信集团天津有限公司
北京天融信网络安全技术有限公司
出处
《微型电脑应用》
2023年第5期174-177,181,共5页
文摘
由于传统异常行为识别方法无法对随时变化的异常行为实现精准识别,因此对CURE聚类算法作出改进,针对网络用户异常行为提出了一种新的识别方法。通过改进CURE聚类算法将用户的上网行为分为正常行为簇和异常行为簇,标记正常行为簇,并利用超矩形建模方式识别数据,分析正常行为簇在每个维度上的正常值域,判断其是否包含在所建立的超矩形内。如果在判定用户行为为正常,反之判断其为异常行为。仿真实验选取了学生上网行为数据,分四个时间段注入异常行为数据,结果表明,所提方法识别结果与设定情况一致,没有出现误识别或不识别现象,改进CURE聚类算法的网络用户异常行为识别精度较高,而且具有超高的效率。
关键词
改进CURE聚类算法
注入异常数据
超矩形建模
识别
模
型
正常行为
Keywords
improved cure clustering algorithm
injection of abnormal data
super rectangle modeling
identification model
normal behavior
分类号
TP325.1 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进CURE聚类算法的网络用户异常行为识别方法
许馨元
李越鹏
王媛媛
《微型电脑应用》
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部