高光谱图像可以获取波段连续的图谱合一的立体数据,其具有丰富的图谱信息,能区分不同物质的类别,被广泛应用于各种遥感勘测领域。但在实际中高光谱图像的标注需要耗费大量的人力、财力和时间,可用的标注样本数量较少,难以通过训练来获...高光谱图像可以获取波段连续的图谱合一的立体数据,其具有丰富的图谱信息,能区分不同物质的类别,被广泛应用于各种遥感勘测领域。但在实际中高光谱图像的标注需要耗费大量的人力、财力和时间,可用的标注样本数量较少,难以通过训练来获得准确的分类结果,所以针对于只有少量标记样本的高光谱图像分类是一个挑战。近年来,自监督学习(Self-supervised Learning,SSL)已成为一种有效的方法,可以减少高光谱图像分类对昂贵的数据标注的依赖。SSL方法通过学习在同一图像的不同视图之间产生的潜在特征,在自然图像分类中取得了较高的分类精度。为了探索SSL方法在高光谱图像分类中的潜力,一种Bootstrap Your Own Latent(BYOL)框架下的自监督高光谱图像分类方法(BSSL)被提出。该方法通过引用自监督的图像特征学习框架BYOL,可以不需要负样本对,利用空间光谱相似的同类样本对进行网络训练及参数微调,提取到更具判别性特征。具体来说,该方法主要包括四个部分:BYOL的预训练、超像素聚类、基于“相似对”的BYOL的再训练和最终分类。为了验证该方法的有效性,在三个公开数据集上进行测试,并与五种先进的无监督、自监督分类方法SuperPCA、S3PCA、ContrastNet、SSCL和N2SSL进行对比,在Indian Pines和Salinas数据集上,BSSL方法的总体分类精度(OA)、平均分类精度(AA)、Kappa系数、召回率(recall)和f1分数(f1-score)都取得了更优值。其中在Indian Pines数据集上,OA分别比SuperPCA,S3PCA,ContrastNet,SSCL和N2SSL提高了1.32%,1.05%,5.68%,3.12%和1.27%。而在University of Pavia数据集上,BSSL方法表现没有那么出色,但在综合分类性能上也表现最优。这表明BSSL方法更适用于地物区域面积较大且分布较集中的场景,因为这对于超像素聚类来说更友好。展开更多
基金financially supported by the National Key Research and Development Program of China (2020YFB1506001)the National Natural Science Foundation of China (Grant Nos. 51772037, 52021004, 22022502, 21761162015, 22179012, 22208034)+1 种基金the Program for the Top Young Innovative Talents of Chongqing (02200011130003)the graduate scientific research and innovation foundation of Chongqing (CYB20044)。
文摘高光谱图像可以获取波段连续的图谱合一的立体数据,其具有丰富的图谱信息,能区分不同物质的类别,被广泛应用于各种遥感勘测领域。但在实际中高光谱图像的标注需要耗费大量的人力、财力和时间,可用的标注样本数量较少,难以通过训练来获得准确的分类结果,所以针对于只有少量标记样本的高光谱图像分类是一个挑战。近年来,自监督学习(Self-supervised Learning,SSL)已成为一种有效的方法,可以减少高光谱图像分类对昂贵的数据标注的依赖。SSL方法通过学习在同一图像的不同视图之间产生的潜在特征,在自然图像分类中取得了较高的分类精度。为了探索SSL方法在高光谱图像分类中的潜力,一种Bootstrap Your Own Latent(BYOL)框架下的自监督高光谱图像分类方法(BSSL)被提出。该方法通过引用自监督的图像特征学习框架BYOL,可以不需要负样本对,利用空间光谱相似的同类样本对进行网络训练及参数微调,提取到更具判别性特征。具体来说,该方法主要包括四个部分:BYOL的预训练、超像素聚类、基于“相似对”的BYOL的再训练和最终分类。为了验证该方法的有效性,在三个公开数据集上进行测试,并与五种先进的无监督、自监督分类方法SuperPCA、S3PCA、ContrastNet、SSCL和N2SSL进行对比,在Indian Pines和Salinas数据集上,BSSL方法的总体分类精度(OA)、平均分类精度(AA)、Kappa系数、召回率(recall)和f1分数(f1-score)都取得了更优值。其中在Indian Pines数据集上,OA分别比SuperPCA,S3PCA,ContrastNet,SSCL和N2SSL提高了1.32%,1.05%,5.68%,3.12%和1.27%。而在University of Pavia数据集上,BSSL方法表现没有那么出色,但在综合分类性能上也表现最优。这表明BSSL方法更适用于地物区域面积较大且分布较集中的场景,因为这对于超像素聚类来说更友好。