Micro-supercapacitors(MSCs) have emerged as one competitive candidate of high-performance, flexible, safe,portable and wearable energy storage devices. However, improving their electrochemical performance from elect...Micro-supercapacitors(MSCs) have emerged as one competitive candidate of high-performance, flexible, safe,portable and wearable energy storage devices. However, improving their electrochemical performance from electrode materials to assembled devices still remains huge challenges.Here, we for the first time synthesized two-dimensional(2D),ultrathin, mesoporous polypyrrole-based graphene nanosheets uniformly anchored with redox polyoxometalate(mPPy@rGO-POM) by soft template approach. Further, using a layer-by-layer deposition and mask-assisted technique, the compactly stacked and sandwich-like hybrid film(mPGM)based on pseudocapacitive mPPy@rGO-POM nano sheets and electrochemically exfoliated graphene was directly fabricated as binder-and additive-free interdigital electrodes for all-solid-state planar micro-supercapacitors(mPGM-MSCs). Notably, the resulted mPGM-MSCs exhibited outstanding areal capacitance(115 mF cm^-2), remarkably enhanced volumetric capacitance(137 F cm^-3 at 1 mV s^-1) in comparison with MSCs based on the films of mPPy@rGO without POM anchoring(95 F cm^-3), and non-porous polypyrrole-graphene(68 F cm^-3).Further, mPGM-MSCs disclosed robust mechanical flexibility with ~96% of capacitance retention at a highly bending angle of 180°, and impressive parallel or serial interconnection for boosting capacitance or voltage output. As a consequence, our proposed strategy of filling the redox species into mesoporous graphene and other 2D nanosheets will open up new ways to manufacture high-compact and flexible energy storage devices ranging from supercapacitors to batteries.展开更多
基金supported by the National Natural Science Foundation of China (51572259)National Key R&D Program of China (2016YBFO100100 and 2016YFA0200200)+3 种基金Natural Science Foundation of Liaoning Province (201602737)Recruitment Program of Global Expert (1000 Talent Plan),DICPChina Postdoctoral Science Foundation (2016M601348)Exploratory Research Program of Shaanxi Yanchang Petroleum (Group) Co.,LTD & DICP
文摘Micro-supercapacitors(MSCs) have emerged as one competitive candidate of high-performance, flexible, safe,portable and wearable energy storage devices. However, improving their electrochemical performance from electrode materials to assembled devices still remains huge challenges.Here, we for the first time synthesized two-dimensional(2D),ultrathin, mesoporous polypyrrole-based graphene nanosheets uniformly anchored with redox polyoxometalate(mPPy@rGO-POM) by soft template approach. Further, using a layer-by-layer deposition and mask-assisted technique, the compactly stacked and sandwich-like hybrid film(mPGM)based on pseudocapacitive mPPy@rGO-POM nano sheets and electrochemically exfoliated graphene was directly fabricated as binder-and additive-free interdigital electrodes for all-solid-state planar micro-supercapacitors(mPGM-MSCs). Notably, the resulted mPGM-MSCs exhibited outstanding areal capacitance(115 mF cm^-2), remarkably enhanced volumetric capacitance(137 F cm^-3 at 1 mV s^-1) in comparison with MSCs based on the films of mPPy@rGO without POM anchoring(95 F cm^-3), and non-porous polypyrrole-graphene(68 F cm^-3).Further, mPGM-MSCs disclosed robust mechanical flexibility with ~96% of capacitance retention at a highly bending angle of 180°, and impressive parallel or serial interconnection for boosting capacitance or voltage output. As a consequence, our proposed strategy of filling the redox species into mesoporous graphene and other 2D nanosheets will open up new ways to manufacture high-compact and flexible energy storage devices ranging from supercapacitors to batteries.