In order to review storage performance of the electric double layer capacitor (EDLC) in microgrid applications, charging time and storage efficiency issues are mainly studied aiming at three different charging modes...In order to review storage performance of the electric double layer capacitor (EDLC) in microgrid applications, charging time and storage efficiency issues are mainly studied aiming at three different charging modes, including the constant voltage charging mode (CVCM), the constant current charging mode (CCCM) and the constant power charging mode (CPCM), based on the practical EDLC product. Numerical calculation methods are presented for different charging modes, and the charging efficiency is also reviewed with strict mathematical deductions, which is validated to be accurate enough and applicable through a simple case with the PV/EDLC system illustration. Finally, trade-off problems between charging time and energy loss are also studied. Research results show that the CPCM is more suitable for microgrid networks compared with the traditional constant-voltage and constant-current charging modes. The hybrid charging method is recommended to save energy and keep high efficiency relatively at the same time. However, how to manage the combination percentage of different charging modes in a reasonable way should be dealt with according to the practical requirements.展开更多
A high-performance porous carbon material for supercapacitor electrodes was prepared by using a polymer blend method. Phenol-formaldehyde resin and gelatin were used as carbon precursor polymer and pore former polymer...A high-performance porous carbon material for supercapacitor electrodes was prepared by using a polymer blend method. Phenol-formaldehyde resin and gelatin were used as carbon precursor polymer and pore former polymer, respectively. The blends were carbonized at 800℃ in nitrogen. SEM, BET measurement and BJH method reveal that the obtained carbon possesses a mesoporous characteristic, with the average pore size between 3.0 nm and 5.0 nm. The electrochemical properties of supercapacitor using these carbons as electrode material were investigated by cyclic voltammetry and constant current charge-discharge. The results indicate that the composition of blended polymers has a strong effect on the specific capacitance. When the mass ratio of PF to gelatin is kept at 1:1, the largest surface area of 222 m2/g is obtained, and the specific capacitance reaches 161 F/g.展开更多
Activated carbon (AC) was fabricated by using phenolic resin as carbon source, silica gel as inorganic template, KOH as activator. The samples were analyzed by N2 adsorption, scanning electron microscopy (SEM). Cy...Activated carbon (AC) was fabricated by using phenolic resin as carbon source, silica gel as inorganic template, KOH as activator. The samples were analyzed by N2 adsorption, scanning electron microscopy (SEM). Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical performance of the samples. The results showed that the pore size was mainly in the range of 0.5 9.0 nm. Supercapacitors based on the sample AC-3 have low equivalent series resistanceb (ESR) and excellent power property.展开更多
The rapid development of portable and wearable electronic devices has increased demand for flexible and efficient energy harvesting and storage units. Conventionally, these are built and used separately as discrete co...The rapid development of portable and wearable electronic devices has increased demand for flexible and efficient energy harvesting and storage units. Conventionally, these are built and used separately as discrete components. Herein, we propose a simple and cost-effective laser engraving technique for fabricating a flexible self-charging micro-supercapacitor power unit (SCMPU), by integrating a triboelectric nanogenerator (TENG) and a micro-supercapacitor (MSC) array into a single device. The SCMPU can be charged directly by ambient mechanical motion. We demonstrate the ability of the SCMPU to continuously power light-emitting diodes and a commercial hygrothermograph. This inves- tigation may promote the development of sustainable self-powered systems and provide a promising new research application for supercapacitors.展开更多
Binary metal chalcogenides(BMCs)have shown better electrochemical performance compared with their mono metal counterparts owing to their abundant phase interfaces,higher active sites,faster electrochemical kinetics an...Binary metal chalcogenides(BMCs)have shown better electrochemical performance compared with their mono metal counterparts owing to their abundant phase interfaces,higher active sites,faster electrochemical kinetics and higher electronic conductivity.Nevertheless,their performance still undergoes adverse decline during electrochemical processes mainly due to poor intrinsic ionic conductivities,large volume expansions,and structural agglomeration and fracture.To tackle these problems,various strategies have been applied to engineer the BMC nanostructures to obtain optimized electrode materials.However,the lack of understanding of the electrochemical response of BMCs still hinders their large-scale application.This review not only highlights the recent progress and development in the preparation of BMC-based electrode materials but also explains the kinetics to further understand the relation between structure and performance.It will also explain the engineering of BMCs through nanostructuring and formation of their hybrid structures with various carbonaceous materials and three-dimensional(3 D)templates.The review will discuss the detailed working mechanism of BMC-based nanostructures in various electrochemical energy storage(EES)systems including supercapacitors,metal-ion batteries,metal-air batteries,and alkaline batteries.In the end,major challenges and prospective solutions for the development of BMCs in EES devices are also outlined.We believe that the current review will provide a guideline for tailoring BMCs for better electrochemical devices.展开更多
The charging kinetics of electric double layers (EDLs) is closely related to the performance of a wide variety of nanostructured devices including supercapacitors, electro-actuators, and electrolyte-gated transistor...The charging kinetics of electric double layers (EDLs) is closely related to the performance of a wide variety of nanostructured devices including supercapacitors, electro-actuators, and electrolyte-gated transistors. While room temperature ionic liquids (RTIL) are often used as the charge carrier in these new applications, the theoretical analyses are mostly based on conventional electrokinetic theories suitable for macroscopic electrochemical phenomena in aqueous solutions. In this work, we study the charging behavior of RTIL-EDLs using a coarse-grained molecular model and constant-potential molecular dynamics (MD) simulations. In stark contrast to the predictions of conventional theories, the MD results show oscillatory variations of ionic distributions and electrochemical properties in response to the separation between electrodes. The rate of EDL charging exhibits non-monotonic behavior revealing strong electrostatic correlations in RTIL under confinement.展开更多
基金The National Natural Science Foundation of China (No.50907010)Ph.D.Programs Foundation of Ministry of Education of China(No.20070286047)Scientific Innovation Foundation for Youngsters of CSEE
文摘In order to review storage performance of the electric double layer capacitor (EDLC) in microgrid applications, charging time and storage efficiency issues are mainly studied aiming at three different charging modes, including the constant voltage charging mode (CVCM), the constant current charging mode (CCCM) and the constant power charging mode (CPCM), based on the practical EDLC product. Numerical calculation methods are presented for different charging modes, and the charging efficiency is also reviewed with strict mathematical deductions, which is validated to be accurate enough and applicable through a simple case with the PV/EDLC system illustration. Finally, trade-off problems between charging time and energy loss are also studied. Research results show that the CPCM is more suitable for microgrid networks compared with the traditional constant-voltage and constant-current charging modes. The hybrid charging method is recommended to save energy and keep high efficiency relatively at the same time. However, how to manage the combination percentage of different charging modes in a reasonable way should be dealt with according to the practical requirements.
基金Projects(50772033,50972043) supported by the National Natural Science Foundation of ChinaProject(09JJ3095) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(09A001) supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2010FJ3151) supported by the Science and Research Plan of Hunan Province,ChinaProject supported by the Science and Technology Innovative Research Team in Higher Education Institution of Hunan Province,China
文摘A high-performance porous carbon material for supercapacitor electrodes was prepared by using a polymer blend method. Phenol-formaldehyde resin and gelatin were used as carbon precursor polymer and pore former polymer, respectively. The blends were carbonized at 800℃ in nitrogen. SEM, BET measurement and BJH method reveal that the obtained carbon possesses a mesoporous characteristic, with the average pore size between 3.0 nm and 5.0 nm. The electrochemical properties of supercapacitor using these carbons as electrode material were investigated by cyclic voltammetry and constant current charge-discharge. The results indicate that the composition of blended polymers has a strong effect on the specific capacitance. When the mass ratio of PF to gelatin is kept at 1:1, the largest surface area of 222 m2/g is obtained, and the specific capacitance reaches 161 F/g.
文摘Activated carbon (AC) was fabricated by using phenolic resin as carbon source, silica gel as inorganic template, KOH as activator. The samples were analyzed by N2 adsorption, scanning electron microscopy (SEM). Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical performance of the samples. The results showed that the pore size was mainly in the range of 0.5 9.0 nm. Supercapacitors based on the sample AC-3 have low equivalent series resistanceb (ESR) and excellent power property.
文摘The rapid development of portable and wearable electronic devices has increased demand for flexible and efficient energy harvesting and storage units. Conventionally, these are built and used separately as discrete components. Herein, we propose a simple and cost-effective laser engraving technique for fabricating a flexible self-charging micro-supercapacitor power unit (SCMPU), by integrating a triboelectric nanogenerator (TENG) and a micro-supercapacitor (MSC) array into a single device. The SCMPU can be charged directly by ambient mechanical motion. We demonstrate the ability of the SCMPU to continuously power light-emitting diodes and a commercial hygrothermograph. This inves- tigation may promote the development of sustainable self-powered systems and provide a promising new research application for supercapacitors.
基金supported by the National Natural Science Fund for Distinguished Young Scholars(52025133)the Tencent Foundation through the XPLORER PRIZE,Beijing Natural Science Foundation(JQ18005)+2 种基金the National Natural Science Foundation of China(52125307 and 11974023)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnic University(NWPU)(SKLSP202004)the Key Area R&D Program of Guangdong Province(2018B030327001 and 2018B010109009)。
文摘Binary metal chalcogenides(BMCs)have shown better electrochemical performance compared with their mono metal counterparts owing to their abundant phase interfaces,higher active sites,faster electrochemical kinetics and higher electronic conductivity.Nevertheless,their performance still undergoes adverse decline during electrochemical processes mainly due to poor intrinsic ionic conductivities,large volume expansions,and structural agglomeration and fracture.To tackle these problems,various strategies have been applied to engineer the BMC nanostructures to obtain optimized electrode materials.However,the lack of understanding of the electrochemical response of BMCs still hinders their large-scale application.This review not only highlights the recent progress and development in the preparation of BMC-based electrode materials but also explains the kinetics to further understand the relation between structure and performance.It will also explain the engineering of BMCs through nanostructuring and formation of their hybrid structures with various carbonaceous materials and three-dimensional(3 D)templates.The review will discuss the detailed working mechanism of BMC-based nanostructures in various electrochemical energy storage(EES)systems including supercapacitors,metal-ion batteries,metal-air batteries,and alkaline batteries.In the end,major challenges and prospective solutions for the development of BMCs in EES devices are also outlined.We believe that the current review will provide a guideline for tailoring BMCs for better electrochemical devices.
基金This work was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences. K. X. is grateful to the Chinese Scholarship Council for a visiting fellowship. Additional support was provided by National Natural Science foundation of China (No. 21276138) and Tsinghua University Foundation (No. 2013108930). The numerical calculations were performed at the National Energy Research Sdentific Computing Center (NERSC).
文摘The charging kinetics of electric double layers (EDLs) is closely related to the performance of a wide variety of nanostructured devices including supercapacitors, electro-actuators, and electrolyte-gated transistors. While room temperature ionic liquids (RTIL) are often used as the charge carrier in these new applications, the theoretical analyses are mostly based on conventional electrokinetic theories suitable for macroscopic electrochemical phenomena in aqueous solutions. In this work, we study the charging behavior of RTIL-EDLs using a coarse-grained molecular model and constant-potential molecular dynamics (MD) simulations. In stark contrast to the predictions of conventional theories, the MD results show oscillatory variations of ionic distributions and electrochemical properties in response to the separation between electrodes. The rate of EDL charging exhibits non-monotonic behavior revealing strong electrostatic correlations in RTIL under confinement.