With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical...With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical energy storage and power supply. However, one of the key challenges for SCs is their limited energy density, which has hindered their wider application in the field of energy storage. Despite significant progress has been achieved in the fabrication of high-energy density positive electrodes materials, negative electrode materials with high capacitance and a wide potential window are relatively less explored. In this review, we introduced some new negative electrode materials except for common carbon-based materials and what's more, based on our team's work recently, we put forward some new strategies to solve their inherent shortcoming as electrode material for SCs.展开更多
Hybrid sodium-ion capacitors(SICs)bridge the gap between the supercapacitors(SCs)and batteries and have huge potential applications in large-scale energy storage.However,designing appropriate anode materials with fast...Hybrid sodium-ion capacitors(SICs)bridge the gap between the supercapacitors(SCs)and batteries and have huge potential applications in large-scale energy storage.However,designing appropriate anode materials with fast kinetics behavior as well as long cycle life to match with the cathode electrodes remains a crucial challenge.Herein,Nb2O5 nanotubes and nanowire-to-nanotube homo-junctions were directly grown on the carbon cloth(CC)via a simple hydrothermal process through regulating the pH value of solution.The as-prepared Nb2O5@CC nanotubes displayed a high reversible capacity of 175 mA hg-1 at the current density of 1Ag-1 with the coulombic efficiency of 97%after 1500 cycles.Besides,the SICs fabricated with Nb2O5@CC and activated carbon(AC)electrode materials showed a high energy density of 195 W h kg-1 at 120 W kg-1,a power density of 7328 W kg-1 at 28 W hkg-1and 80%of the capacitance retention after 5000 cycles.Additionally,the flexible SIC devices can operate normally at various bendable conditions.The Nb2O5@CC nanotubes in this work can be promising electrode materials in flexible and wearable energy storage devices.展开更多
To satisfy the requirements for various electric systems and energy storage devices with both high energy density and power density as well as long lifespan, sodium-ion capacitors(SICs) consisting of battery anode and...To satisfy the requirements for various electric systems and energy storage devices with both high energy density and power density as well as long lifespan, sodium-ion capacitors(SICs) consisting of battery anode and supercapacitor cathode, have attracted much attention due to the abundant resources and low cost of sodium source. SICs bridge the gap between the batteries and the supercapacitors,which can be used as competitive candidates for large-scale energy storage. In this review, the battery-type anode materials and the capacitor-type cathode materials are classified and introduced in detail. The advantages of various electrolytes including organic electrolytes, aqueous electrolytes and ion liquid electrolytes are also discussed sequentially. In addition, from the perspective of practical value, the presentations of the SICs at the current situation and the potential application in urban rail are displayed. Finally, the challenge,future research and prospects towards the SICs are put forward.展开更多
TiNb2O7 anode materials(TNO)have unique potential for applications in Li-ion capacitors(LICs)due to their high specific capacity of ca.280 mA h g^-1 over a wide anodic Li-insertion potential window.However,their highr...TiNb2O7 anode materials(TNO)have unique potential for applications in Li-ion capacitors(LICs)due to their high specific capacity of ca.280 mA h g^-1 over a wide anodic Li-insertion potential window.However,their highrate capability is limited by their poor electronic and ionic conductivity.In particular,studies on TNO for LICs are lacking and that for flexible LICs have not yet been reported.Herein,a unique TNO porous electrode with cross-linked nanorods tailored by post-annealing and its application in flexible LICs are reported.This binder-free TNO anode exhibits superior rate performance(~66.3%capacity retention as the rate increases from 1 to 40 C),which is ascribed to the greatly shortened ion-diffusion length in TNO nanorods,facile electrolyte penetration and fast electron transport along the continuous single-crystalline nanorod network.Furthermore,the TNO anode shows an excellent cycling stability up to 2000 cycles and good flexibility(no capacity loss after continuous bending for 500 times).Model flexible LIC assembled with the TNO anode and activated carbon cathode exhibits increased gravimetric and volumetric energy/power densities(~100.6 W h kg^-1/4108.8 W kg^-1;10.7 mW h cm^-3/419.3 mW cm^-3),more superior to previously reported hybrid supercapacitors.The device also efficiently powers an LED light upon 180°bending.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51173212&21273290)the National Basic Research Program of China("973"Project)(Grant No.2015CB932304)+4 种基金the Natural Science Foundations of Guangdong Province(Grant Nos.S2013020012833&S2013030013474)Fundamental Research Fund for the Central Universities(Grant No.13lgpy51)SRF for ROCS,SEM(Grant No.[2012]1707)the Project of High Level Talents in Higher School of Guangdong Province,and Open-End Fund of Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University)Ministry of Education,and the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120171110043)
文摘With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical energy storage and power supply. However, one of the key challenges for SCs is their limited energy density, which has hindered their wider application in the field of energy storage. Despite significant progress has been achieved in the fabrication of high-energy density positive electrodes materials, negative electrode materials with high capacitance and a wide potential window are relatively less explored. In this review, we introduced some new negative electrode materials except for common carbon-based materials and what's more, based on our team's work recently, we put forward some new strategies to solve their inherent shortcoming as electrode material for SCs.
基金supported by the National Natural Science Foundation of China(5167230851972025 and 61888102)。
文摘Hybrid sodium-ion capacitors(SICs)bridge the gap between the supercapacitors(SCs)and batteries and have huge potential applications in large-scale energy storage.However,designing appropriate anode materials with fast kinetics behavior as well as long cycle life to match with the cathode electrodes remains a crucial challenge.Herein,Nb2O5 nanotubes and nanowire-to-nanotube homo-junctions were directly grown on the carbon cloth(CC)via a simple hydrothermal process through regulating the pH value of solution.The as-prepared Nb2O5@CC nanotubes displayed a high reversible capacity of 175 mA hg-1 at the current density of 1Ag-1 with the coulombic efficiency of 97%after 1500 cycles.Besides,the SICs fabricated with Nb2O5@CC and activated carbon(AC)electrode materials showed a high energy density of 195 W h kg-1 at 120 W kg-1,a power density of 7328 W kg-1 at 28 W hkg-1and 80%of the capacitance retention after 5000 cycles.Additionally,the flexible SIC devices can operate normally at various bendable conditions.The Nb2O5@CC nanotubes in this work can be promising electrode materials in flexible and wearable energy storage devices.
基金financially supported by the National Natural Science Foundation of China (51672308, 51972025 and 61888102)
文摘To satisfy the requirements for various electric systems and energy storage devices with both high energy density and power density as well as long lifespan, sodium-ion capacitors(SICs) consisting of battery anode and supercapacitor cathode, have attracted much attention due to the abundant resources and low cost of sodium source. SICs bridge the gap between the batteries and the supercapacitors,which can be used as competitive candidates for large-scale energy storage. In this review, the battery-type anode materials and the capacitor-type cathode materials are classified and introduced in detail. The advantages of various electrolytes including organic electrolytes, aqueous electrolytes and ion liquid electrolytes are also discussed sequentially. In addition, from the perspective of practical value, the presentations of the SICs at the current situation and the potential application in urban rail are displayed. Finally, the challenge,future research and prospects towards the SICs are put forward.
基金supported by the National Natural Science Foundation of China (51672205, 21673169 and 51972257)the National Key R&D Program of China (2016YFA0202602)the Natural Science Foundation of Hubei Province (2018CFB581)
文摘TiNb2O7 anode materials(TNO)have unique potential for applications in Li-ion capacitors(LICs)due to their high specific capacity of ca.280 mA h g^-1 over a wide anodic Li-insertion potential window.However,their highrate capability is limited by their poor electronic and ionic conductivity.In particular,studies on TNO for LICs are lacking and that for flexible LICs have not yet been reported.Herein,a unique TNO porous electrode with cross-linked nanorods tailored by post-annealing and its application in flexible LICs are reported.This binder-free TNO anode exhibits superior rate performance(~66.3%capacity retention as the rate increases from 1 to 40 C),which is ascribed to the greatly shortened ion-diffusion length in TNO nanorods,facile electrolyte penetration and fast electron transport along the continuous single-crystalline nanorod network.Furthermore,the TNO anode shows an excellent cycling stability up to 2000 cycles and good flexibility(no capacity loss after continuous bending for 500 times).Model flexible LIC assembled with the TNO anode and activated carbon cathode exhibits increased gravimetric and volumetric energy/power densities(~100.6 W h kg^-1/4108.8 W kg^-1;10.7 mW h cm^-3/419.3 mW cm^-3),more superior to previously reported hybrid supercapacitors.The device also efficiently powers an LED light upon 180°bending.