In this paper, we report CoP nanowires supported on carbon cloth (CC) (CoP/CC) as a bifunctional electrode for hydrogen evolution reaction (HER) and supercapacitor. CoP/CC possess an excellent electrocatalytic p...In this paper, we report CoP nanowires supported on carbon cloth (CC) (CoP/CC) as a bifunctional electrode for hydrogen evolution reaction (HER) and supercapacitor. CoP/CC possess an excellent electrocatalytic performance for HER, with a Tafel slope of 56 mV/dec and a low overpotential of 68 mV to achieve a current density of 10 mAcm^-2. Remarkably, the bifunctional CoP/CC used as electrode for supercapacitor exhibit a higher specific capacitance of 674 F g^-1 at a scan rate of 5 mV s^-1 and maintains long-life cycling stability, retaining 86% of the initial capacitance after 10,000 cycles. CoP/CC will be a promising candidate as electrode for HER and supercapacitor.展开更多
In this paper, hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays(NWAs) on Ni foam were prepared through a two-step hydrothermal process associated with successive annealing treatment. The Co3O4@ZnCo2O4 hy...In this paper, hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays(NWAs) on Ni foam were prepared through a two-step hydrothermal process associated with successive annealing treatment. The Co3O4@ZnCo2O4 hybrid NWAs exhibited excellent electrochemical performances with a high specific capacity of 1,240.5 C g^-1 at a current density of 2 mA cm^-2, with rate capability of 59.0%shifting from 2 to 30 mA cm^-2, and only a 9.1% loss of its capacity even after 3,000 cycles at a consistent current density of 10 mA cm^-2. An asymmetric supercapacitor(Co3O4@ZnCo2O4 NWAs||activated carbon) was fabricated and exhibited a high specific capacity of 168 C g^-1 at a current density of 1 A g^-1. And a preferable energy density of 37.3 W h kg^-1 at a power density of 800 W kg^-1 was obtained. The excellent electrochemical performances indicate the promising potential application of the hierarchical mesoporous Co3O4@ZnCo2O4 hybrid NWAs in energy storage field.展开更多
基金supported by the National Natural Science Foundation of China (51732010,51571172,11404280,51672240 and 51571171)the Natural Science Foundation for Distinguished Young Scholars of Hebei Province (E2017203095)+2 种基金the Natural Science Foundation of Hebei Province (E2016203484 and A2015203337)the Research Program of the College Science & Technology of Hebei Province (ZD2017083 and QN2014047)the Graduate Innovation Fund (CXZZSS2017055 and 2017XJSS044)
文摘In this paper, we report CoP nanowires supported on carbon cloth (CC) (CoP/CC) as a bifunctional electrode for hydrogen evolution reaction (HER) and supercapacitor. CoP/CC possess an excellent electrocatalytic performance for HER, with a Tafel slope of 56 mV/dec and a low overpotential of 68 mV to achieve a current density of 10 mAcm^-2. Remarkably, the bifunctional CoP/CC used as electrode for supercapacitor exhibit a higher specific capacitance of 674 F g^-1 at a scan rate of 5 mV s^-1 and maintains long-life cycling stability, retaining 86% of the initial capacitance after 10,000 cycles. CoP/CC will be a promising candidate as electrode for HER and supercapacitor.
基金supported by the National Natural Science Foundation of China (51571072)the Fundamental Research Funds for the Central Universities (AUGA5710012715)+1 种基金China Postdoctoral Science Foundation (2015M81436)Heilongjiang Postdoctoral Science Foundation (LBH-Z15065)
文摘In this paper, hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays(NWAs) on Ni foam were prepared through a two-step hydrothermal process associated with successive annealing treatment. The Co3O4@ZnCo2O4 hybrid NWAs exhibited excellent electrochemical performances with a high specific capacity of 1,240.5 C g^-1 at a current density of 2 mA cm^-2, with rate capability of 59.0%shifting from 2 to 30 mA cm^-2, and only a 9.1% loss of its capacity even after 3,000 cycles at a consistent current density of 10 mA cm^-2. An asymmetric supercapacitor(Co3O4@ZnCo2O4 NWAs||activated carbon) was fabricated and exhibited a high specific capacity of 168 C g^-1 at a current density of 1 A g^-1. And a preferable energy density of 37.3 W h kg^-1 at a power density of 800 W kg^-1 was obtained. The excellent electrochemical performances indicate the promising potential application of the hierarchical mesoporous Co3O4@ZnCo2O4 hybrid NWAs in energy storage field.