A colloidal solution of 5 nm Au tetradecanethiol-coated nanoparticles is syn-thesized. After fast evaporation of one drop, ordered monolayers both composed of single domain and polycrystalline nanocrystals are obtaine...A colloidal solution of 5 nm Au tetradecanethiol-coated nanoparticles is syn-thesized. After fast evaporation of one drop, ordered monolayers both composed of single domain and polycrystalline nanocrystals are obtained. On increasing the amount of materials and the evaporation time, nanocrystal films with irregular outlines are produced together with close-packed 3D superlattices exhibiting a truncated-tetrahedral shape. Using low-frequency micro-Raman scattering spectroscopy and electron microscopy the building block nanocrystallinity is characterized. Spontaneous nanocrystallinity segregation is revealed: the truncated-tetrahedral supracrystals are shown to mainly contain single domain building blocks while the supracrystalline films are composed of a mixture of single domain and polycrystalline nanocrystals. This observation points out the correlation between the nanocrystallinity segregation involved in the growth of the nanocrystal superlattices and their morphology.展开更多
文摘A colloidal solution of 5 nm Au tetradecanethiol-coated nanoparticles is syn-thesized. After fast evaporation of one drop, ordered monolayers both composed of single domain and polycrystalline nanocrystals are obtained. On increasing the amount of materials and the evaporation time, nanocrystal films with irregular outlines are produced together with close-packed 3D superlattices exhibiting a truncated-tetrahedral shape. Using low-frequency micro-Raman scattering spectroscopy and electron microscopy the building block nanocrystallinity is characterized. Spontaneous nanocrystallinity segregation is revealed: the truncated-tetrahedral supracrystals are shown to mainly contain single domain building blocks while the supracrystalline films are composed of a mixture of single domain and polycrystalline nanocrystals. This observation points out the correlation between the nanocrystallinity segregation involved in the growth of the nanocrystal superlattices and their morphology.