Ultrasound with different intensities was applied to treating AZ80 alloy melt to improve its solidification structure.The average grain size of the alloy could be decreased from 303 to 148 μm after the ultrasound wit...Ultrasound with different intensities was applied to treating AZ80 alloy melt to improve its solidification structure.The average grain size of the alloy could be decreased from 303 to 148 μm after the ultrasound with intensity of 30.48 W/cm2 was applied.To gain insight into the mechanism of ultrasonic treatment which affected the microstructure of the alloy,numerical simulations were carried out and the effects of different ultrasonic pressures on the behaviors of cavitation bubble in the melt were studied.The ultrasonic field propagation in the melt was also characterized.The results show that samples from different positions are subjected to different acoustic pressures and the effect of grain refinement by ultrasonic treatment for these samples is different.With the increase of ultrasonic intensity,the acoustic pressure is increased and the grain size is decreased generally.展开更多
The biorefinery process for sugarcane bagasse saccharification generally requires signifcant accessibility of cellulose. We reported a novel method of cascade cellulase enzymatic hydrol- ysis coupling with ultrafine g...The biorefinery process for sugarcane bagasse saccharification generally requires signifcant accessibility of cellulose. We reported a novel method of cascade cellulase enzymatic hydrol- ysis coupling with ultrafine grinding pretreatment for sugarcane bagasse saccharification. Three enzymatic hydrolysis modes including single cellulase enzymatic hydrolysis, mixed cellulase enzymatic hydrolysis, and cascade cellulase enzymatic hydrolysis were compared. The changes on the functional group and surface morphology of bagasse during cascade cellulase enzymatic hydrolysis were also examined by FT-IR and SEM respectively. The results showed that cascade enzymatic hydrolysis was the most efficient way to enhance the sugarcane bagasse saccharification. More than 65% of reducing sugar yield with 90.1% of glucose selectivity was achieved at 50 ℃, pH=4.8 for 72 h (1200 r/min) with cellulase I of 7.5 FPU/g substrate and cellulase II of 5 FPU/g substrate.展开更多
The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock...The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock in forming operations. The experiments included the application of ultrasonic vibrations to the molten alloys via direct and indirect techniques. Several process parameters such as pouring temperatures(several temperatures between 740 and 660℃), and treatment time(from 12 min down to 2 min) were investigated. The experiment included continuous ultrasonic treatment from the liquid to the semisolid states. The results showed that both treatment techniques were viable for producing billets with the desirable microstructural characteristics. The optimum treatment conditions were the short treatment time(2 to 3 min), from about 660℃ down to 615℃ for the indirect treatment technique, and from 660℃ to 635℃ for the direct treatment technique. The resulting microstructures, at three positions along the height of the ingot, were characterized by fine, non-dendritic α(Al) grains in the order of a hundred microns, as compared to few thousands of microns for the conventional cast ingots. The intermetallic particles were also refined in size and modified in morphology by the ultrasonic treatment. The operating mechanisms by which the ultrasonic vibrations altered the ingot microstructures were discussed and analyzed.展开更多
Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the ext...Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the extraction of silver from the tailings in cyanide leaching (i.e. 36% Ag extraction rate from the as-received tailings with d80 of 100 μm, c.f. 84% extraction rate after ultra fine grinding of the tailings with ds0 of 1.2 pro). In the ultra fine grinding tests, the effects of ball diameter (2-4.5 mm), stirring speed (200-800 r/m/n) and ball charge ratio (50%-80%) on the fineness of grind (ds0, ~tm) were investigated through a Box-Behnken design. Increasing stirrer speed and ball charge ratio decreased fineness of grind while larger balls resulted in the coarser products. The tests demonstrated that a fineness of grind less than 5 μm can be achieved under suitable conditions. Analysis of stress intensity indicated an optimum range of stress intensity of (0.8-2)× 10^- 3 μm for all power inputs.展开更多
Effect of annealing and solution treatment prior to cryorolling on the formation of initial structure influencing microstructure formation from nano to micron scale and resultant mechanical and corrosion properties in...Effect of annealing and solution treatment prior to cryorolling on the formation of initial structure influencing microstructure formation from nano to micron scale and resultant mechanical and corrosion properties in Al 1100 alloy has been studied in detail.Before subjecting to 50%cryorolling,samples were pre-annealed at 250℃ for 2 h and pre-solution treated at 540℃ for 1 h.X-ray diffraction and HRTEM techniques were used to understand the crystallite size,lattice strain and dislocation configuration in the processed alloy.The results indicate that the pre-annealed sample has the highest grain aspect ratio(4.43),the smallest crystallite size(37.53 nm),the highest lattice strain(9.12×10^(−3))and the highest dislocation density(45.16×10^(13) m^(−2))among the tested sample.The pre-annealed sample shows a significant improvement of 43.44%,24.64%and 20.33%in hardness,ultimate tensile strength and yield strength.Both pre-annealed and pre-solution treated samples show improved corrosion resistance when compared to cryorolled samples without any pre-treatment,with the pre-annealed sample showing the best corrosion resistance.展开更多
基金Projects (2007CB613701,2007CB613702) supported by the National Basic Research Program of ChinaProjects (50974037,50904018) supported by the National Natural Science Foundation of ChinaProject (NCET-08-0098) supported by the Program for New Century Excellent Talents in University of China
文摘Ultrasound with different intensities was applied to treating AZ80 alloy melt to improve its solidification structure.The average grain size of the alloy could be decreased from 303 to 148 μm after the ultrasound with intensity of 30.48 W/cm2 was applied.To gain insight into the mechanism of ultrasonic treatment which affected the microstructure of the alloy,numerical simulations were carried out and the effects of different ultrasonic pressures on the behaviors of cavitation bubble in the melt were studied.The ultrasonic field propagation in the melt was also characterized.The results show that samples from different positions are subjected to different acoustic pressures and the effect of grain refinement by ultrasonic treatment for these samples is different.With the increase of ultrasonic intensity,the acoustic pressure is increased and the grain size is decreased generally.
基金This work was supported by the National Highteeh R&D Program of China (No.2012AA101806), the National Natural Science Foundation of China (No.51306191), and the National Key Technology R&D Program (No.2014BAD02B01).
文摘The biorefinery process for sugarcane bagasse saccharification generally requires signifcant accessibility of cellulose. We reported a novel method of cascade cellulase enzymatic hydrol- ysis coupling with ultrafine grinding pretreatment for sugarcane bagasse saccharification. Three enzymatic hydrolysis modes including single cellulase enzymatic hydrolysis, mixed cellulase enzymatic hydrolysis, and cascade cellulase enzymatic hydrolysis were compared. The changes on the functional group and surface morphology of bagasse during cascade cellulase enzymatic hydrolysis were also examined by FT-IR and SEM respectively. The results showed that cascade enzymatic hydrolysis was the most efficient way to enhance the sugarcane bagasse saccharification. More than 65% of reducing sugar yield with 90.1% of glucose selectivity was achieved at 50 ℃, pH=4.8 for 72 h (1200 r/min) with cellulase I of 7.5 FPU/g substrate and cellulase II of 5 FPU/g substrate.
文摘The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock in forming operations. The experiments included the application of ultrasonic vibrations to the molten alloys via direct and indirect techniques. Several process parameters such as pouring temperatures(several temperatures between 740 and 660℃), and treatment time(from 12 min down to 2 min) were investigated. The experiment included continuous ultrasonic treatment from the liquid to the semisolid states. The results showed that both treatment techniques were viable for producing billets with the desirable microstructural characteristics. The optimum treatment conditions were the short treatment time(2 to 3 min), from about 660℃ down to 615℃ for the indirect treatment technique, and from 660℃ to 635℃ for the direct treatment technique. The resulting microstructures, at three positions along the height of the ingot, were characterized by fine, non-dendritic α(Al) grains in the order of a hundred microns, as compared to few thousands of microns for the conventional cast ingots. The intermetallic particles were also refined in size and modified in morphology by the ultrasonic treatment. The operating mechanisms by which the ultrasonic vibrations altered the ingot microstructures were discussed and analyzed.
文摘Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the extraction of silver from the tailings in cyanide leaching (i.e. 36% Ag extraction rate from the as-received tailings with d80 of 100 μm, c.f. 84% extraction rate after ultra fine grinding of the tailings with ds0 of 1.2 pro). In the ultra fine grinding tests, the effects of ball diameter (2-4.5 mm), stirring speed (200-800 r/m/n) and ball charge ratio (50%-80%) on the fineness of grind (ds0, ~tm) were investigated through a Box-Behnken design. Increasing stirrer speed and ball charge ratio decreased fineness of grind while larger balls resulted in the coarser products. The tests demonstrated that a fineness of grind less than 5 μm can be achieved under suitable conditions. Analysis of stress intensity indicated an optimum range of stress intensity of (0.8-2)× 10^- 3 μm for all power inputs.
基金Universiti Sains Malaysia for providing the fund for this study under RU grant No.1001/PBahan/8014105.
文摘Effect of annealing and solution treatment prior to cryorolling on the formation of initial structure influencing microstructure formation from nano to micron scale and resultant mechanical and corrosion properties in Al 1100 alloy has been studied in detail.Before subjecting to 50%cryorolling,samples were pre-annealed at 250℃ for 2 h and pre-solution treated at 540℃ for 1 h.X-ray diffraction and HRTEM techniques were used to understand the crystallite size,lattice strain and dislocation configuration in the processed alloy.The results indicate that the pre-annealed sample has the highest grain aspect ratio(4.43),the smallest crystallite size(37.53 nm),the highest lattice strain(9.12×10^(−3))and the highest dislocation density(45.16×10^(13) m^(−2))among the tested sample.The pre-annealed sample shows a significant improvement of 43.44%,24.64%and 20.33%in hardness,ultimate tensile strength and yield strength.Both pre-annealed and pre-solution treated samples show improved corrosion resistance when compared to cryorolled samples without any pre-treatment,with the pre-annealed sample showing the best corrosion resistance.