期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
电气石粒度对其远红外辐射和吸附效应的影响 被引量:6
1
作者 韩炜 陈敬中 吴驰飞 《矿产综合利用》 CAS 2005年第4期22-26,共5页
为了更深入了解超细纳米化电气石的特性,对新疆阿勒泰矿区的黑色电气石样品进行了超细纳米化处理,考察了不同粒径的电气石超细粉体对其远红外辐射和吸附效应的影响,并作出了相应的评价。
关键词 电气石 超细纳米化 远红外辐射 吸附效应 粒径
下载PDF
Fabrication of ultrafine Pd nanoparticles on 3D ordered macroporous TiO_2 for enhanced catalytic activity during diesel soot combustion 被引量:4
2
作者 Yuechang Wei Qiangqiang Wu +2 位作者 Jing Xiong Jian Liu Zhen Zhao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期606-612,共7页
Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method... Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method.These catalysts had a well‐defined and highly ordered macroporous nanostructure with an average pore size of 280 nm.In addition,ultrafine hemispherical Pd nanoparticles(NPs)with a mean particle size of 1.1 nm were found to be well dispersed over the surface of the 3DOM‐TiO2 support and deposited on the inner walls of the material.The nanostructure of the 3DOM‐TiO2 support ensured efficient contact between soot particles and the catalyst.The large interface area between the ultrafine Pd NPs and the TiO2 also increased the density of sites for O2 activation as a result of the strong metal(Pd)‐support(TiO2)interaction(SMSI).A Pd/3DOM‐TiO2‐GBMR catalyst with ultrafine Pd NPs(1.1 nm)exhibited higher catalytic activity during diesel soot combustion compared with that obtained from a specimen having relatively large Pd NPs(5.0 nm).The T10,T50 and T90 values obtained from the former were 295,370 and 415°C.Both the activity and nanostructure of the Pd/3DOM‐TiO2‐GBMR catalyst were stable over five replicate soot oxidation trials.These results suggest that nanocatalysts having a 3DOM structure together with ultrafine Pd NPs can decrease the amount of Pd required,and that this approach has potential practical applications in the catalytic combustion of diesel soot particles. 展开更多
关键词 Ordered macroporous material Pd TiO2 Diesel soot combustion Ultrafine nanoparticle Heterogeneous catalysis
下载PDF
Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes 被引量:2
3
作者 HUO Yi-feng QIN Ning +3 位作者 LIAO Cheng-zhu FENG Hui-fen GU Ying-ying CHENG Hua 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1416-1425,共10页
Ultrafine cube-shape Ce2Sn2O7 nanoparticles crystallized in pure pyrochlore phase with a size of about 10 nm have been successfully synthesized by a facile hydrothermal method.Conditional experiments have been conduct... Ultrafine cube-shape Ce2Sn2O7 nanoparticles crystallized in pure pyrochlore phase with a size of about 10 nm have been successfully synthesized by a facile hydrothermal method.Conditional experiments have been conducted to optimize the processing parameters including temperature,pH,reaction duration,precipitator types to obtain phase-pure Ce2Sn2O7.The crystal structure,morphology and sizes and specific surface area have been characterized by X-ray diffractometer(XRD),Raman spectrum,transmission electron microscope(TEM),high resolution transmission electron microscope(HRTEM),and Brunauer-Emmett-Teller(BET).The as-synthesized Ce2Sn2O7 ultrafine nanocubes have been evaluated as electrode materials for pseudo-capacitors and lithium ion batteries.When testing as supercapacitors,a high specific capacitance of 222 F/g at 0.1 A/g and a good cycling stability with a capacitance retention of higher than 86%after 5000 cycle have been achieved.When targeted for anode material for lithium ion batteries,the nanocubes deliver a high specific reversible capacity of more than 900 mA·h/g at 0.05C rate.The rate capability and cycling performance is also very promising as compared with the traditional graphite anode. 展开更多
关键词 SUPERCAPACITORS lithium ion batteries composite oxides ultrafine nanoparticles hydrothermal PYROCHLORE
下载PDF
Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction 被引量:2
4
作者 Ting Huang Tao Shen +6 位作者 Mingxing Gong Shaofeng Deng Chenglong Lai Xupo Liu Tonghui Zhao Lin Teng Deli Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第12期1867-1873,共7页
The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel ... The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel boron nanoparticles supported on Vulcan carbon(Ni-B)via a simple,yet scalable,two-step chemical reduction–annealing strategy.The results of the electrochemical measurements suggest that the overpotentials of Ni-B-400 are 114 and 215 mV(in 1 mol L^–1 KOH)at current densities of 10 and 40 mA cm^?2,respectively,indicating an exceedingly good electrocatalytic activity in the HER.More importantly,Ni-B maintains a current density of 7.6 mA cm^-2 at an overpotential of 0.15 V for 20 h in the durability test.The excellent HER activity of Ni-B-400 is derived from the small particle size and the expanded lattice of Ni,which can optimize the hydrogen absorption energy and enhance the electrocatalytic properties. 展开更多
关键词 Ni-B Non-noble electrocatalyst Hydrogen evolution reaction Ultrafine nanoparticle Alkaline electrolyte
下载PDF
Role of plastic deformation in tailoring ultrafine microstructure in nanotwinned diamond for enhanced hardness 被引量:4
5
作者 胡文涛 温斌 +8 位作者 黄权 肖建伟 于栋利 王雁宾 赵智胜 何巨龙 柳忠元 徐波 田永君 《Science China Materials》 SCIE EI CSCD 2017年第2期178-185,共8页
Nanotwinned diamond(nt-diamond),which demonstrates unprecedented hardness and stability,is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature(HPHT).Its hardne... Nanotwinned diamond(nt-diamond),which demonstrates unprecedented hardness and stability,is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature(HPHT).Its hardness and stability increase with decreasing twin thickness at the nanoscale.However,the formation mechanism of nanotwinning substructures within diamond nanograins is not well established.Here,we characterize the nanotwins in nt-diamonds synthesized under different HPHT conditions.Our observation shows that the nanotwin thickness reaches a minimum at ~20 GPa,below which phase-transformation twins and deformation twins coexist.Then,we use the density-functional-based tight-binding method and kinetic dislocation theory to investigate the subsequent plastic deformation mechanism in these pre-existing phase-transformation diamond twins.Our results suggest that pressure-dependent conversion of the plastic deformation mechanism occurs at a critical synthetic pressure for nt-diamond,which explains the existence of the minimum twin thickness.Our findings provide guidance on optimizing the synthetic conditions for fabricating nt-diamond with higher hardness and stability. 展开更多
关键词 nanotwinned diamond high temperature and high pressure(HTHP) plastic deformation HARDNESS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部