Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method...Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method.These catalysts had a well‐defined and highly ordered macroporous nanostructure with an average pore size of 280 nm.In addition,ultrafine hemispherical Pd nanoparticles(NPs)with a mean particle size of 1.1 nm were found to be well dispersed over the surface of the 3DOM‐TiO2 support and deposited on the inner walls of the material.The nanostructure of the 3DOM‐TiO2 support ensured efficient contact between soot particles and the catalyst.The large interface area between the ultrafine Pd NPs and the TiO2 also increased the density of sites for O2 activation as a result of the strong metal(Pd)‐support(TiO2)interaction(SMSI).A Pd/3DOM‐TiO2‐GBMR catalyst with ultrafine Pd NPs(1.1 nm)exhibited higher catalytic activity during diesel soot combustion compared with that obtained from a specimen having relatively large Pd NPs(5.0 nm).The T10,T50 and T90 values obtained from the former were 295,370 and 415°C.Both the activity and nanostructure of the Pd/3DOM‐TiO2‐GBMR catalyst were stable over five replicate soot oxidation trials.These results suggest that nanocatalysts having a 3DOM structure together with ultrafine Pd NPs can decrease the amount of Pd required,and that this approach has potential practical applications in the catalytic combustion of diesel soot particles.展开更多
Ultrafine cube-shape Ce2Sn2O7 nanoparticles crystallized in pure pyrochlore phase with a size of about 10 nm have been successfully synthesized by a facile hydrothermal method.Conditional experiments have been conduct...Ultrafine cube-shape Ce2Sn2O7 nanoparticles crystallized in pure pyrochlore phase with a size of about 10 nm have been successfully synthesized by a facile hydrothermal method.Conditional experiments have been conducted to optimize the processing parameters including temperature,pH,reaction duration,precipitator types to obtain phase-pure Ce2Sn2O7.The crystal structure,morphology and sizes and specific surface area have been characterized by X-ray diffractometer(XRD),Raman spectrum,transmission electron microscope(TEM),high resolution transmission electron microscope(HRTEM),and Brunauer-Emmett-Teller(BET).The as-synthesized Ce2Sn2O7 ultrafine nanocubes have been evaluated as electrode materials for pseudo-capacitors and lithium ion batteries.When testing as supercapacitors,a high specific capacitance of 222 F/g at 0.1 A/g and a good cycling stability with a capacitance retention of higher than 86%after 5000 cycle have been achieved.When targeted for anode material for lithium ion batteries,the nanocubes deliver a high specific reversible capacity of more than 900 mA·h/g at 0.05C rate.The rate capability and cycling performance is also very promising as compared with the traditional graphite anode.展开更多
The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel ...The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel boron nanoparticles supported on Vulcan carbon(Ni-B)via a simple,yet scalable,two-step chemical reduction–annealing strategy.The results of the electrochemical measurements suggest that the overpotentials of Ni-B-400 are 114 and 215 mV(in 1 mol L^–1 KOH)at current densities of 10 and 40 mA cm^?2,respectively,indicating an exceedingly good electrocatalytic activity in the HER.More importantly,Ni-B maintains a current density of 7.6 mA cm^-2 at an overpotential of 0.15 V for 20 h in the durability test.The excellent HER activity of Ni-B-400 is derived from the small particle size and the expanded lattice of Ni,which can optimize the hydrogen absorption energy and enhance the electrocatalytic properties.展开更多
Nanotwinned diamond(nt-diamond),which demonstrates unprecedented hardness and stability,is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature(HPHT).Its hardne...Nanotwinned diamond(nt-diamond),which demonstrates unprecedented hardness and stability,is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature(HPHT).Its hardness and stability increase with decreasing twin thickness at the nanoscale.However,the formation mechanism of nanotwinning substructures within diamond nanograins is not well established.Here,we characterize the nanotwins in nt-diamonds synthesized under different HPHT conditions.Our observation shows that the nanotwin thickness reaches a minimum at ~20 GPa,below which phase-transformation twins and deformation twins coexist.Then,we use the density-functional-based tight-binding method and kinetic dislocation theory to investigate the subsequent plastic deformation mechanism in these pre-existing phase-transformation diamond twins.Our results suggest that pressure-dependent conversion of the plastic deformation mechanism occurs at a critical synthetic pressure for nt-diamond,which explains the existence of the minimum twin thickness.Our findings provide guidance on optimizing the synthetic conditions for fabricating nt-diamond with higher hardness and stability.展开更多
基金supported by the National Natural Science Foundation of China(21673142,21477164)the National High Technology Research and Development Program of China(863 Program,2015AA030903)~~
文摘Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method.These catalysts had a well‐defined and highly ordered macroporous nanostructure with an average pore size of 280 nm.In addition,ultrafine hemispherical Pd nanoparticles(NPs)with a mean particle size of 1.1 nm were found to be well dispersed over the surface of the 3DOM‐TiO2 support and deposited on the inner walls of the material.The nanostructure of the 3DOM‐TiO2 support ensured efficient contact between soot particles and the catalyst.The large interface area between the ultrafine Pd NPs and the TiO2 also increased the density of sites for O2 activation as a result of the strong metal(Pd)‐support(TiO2)interaction(SMSI).A Pd/3DOM‐TiO2‐GBMR catalyst with ultrafine Pd NPs(1.1 nm)exhibited higher catalytic activity during diesel soot combustion compared with that obtained from a specimen having relatively large Pd NPs(5.0 nm).The T10,T50 and T90 values obtained from the former were 295,370 and 415°C.Both the activity and nanostructure of the Pd/3DOM‐TiO2‐GBMR catalyst were stable over five replicate soot oxidation trials.These results suggest that nanocatalysts having a 3DOM structure together with ultrafine Pd NPs can decrease the amount of Pd required,and that this approach has potential practical applications in the catalytic combustion of diesel soot particles.
基金Project(JCYJ20170817110251498)supported by the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2016TQ03C919)supported by the Guangdong Special Support for the Science and Technology Leading Young Scientist,ChinaProjects(21603094,21703096)supported by the National Natural Science Foundation of China
文摘Ultrafine cube-shape Ce2Sn2O7 nanoparticles crystallized in pure pyrochlore phase with a size of about 10 nm have been successfully synthesized by a facile hydrothermal method.Conditional experiments have been conducted to optimize the processing parameters including temperature,pH,reaction duration,precipitator types to obtain phase-pure Ce2Sn2O7.The crystal structure,morphology and sizes and specific surface area have been characterized by X-ray diffractometer(XRD),Raman spectrum,transmission electron microscope(TEM),high resolution transmission electron microscope(HRTEM),and Brunauer-Emmett-Teller(BET).The as-synthesized Ce2Sn2O7 ultrafine nanocubes have been evaluated as electrode materials for pseudo-capacitors and lithium ion batteries.When testing as supercapacitors,a high specific capacitance of 222 F/g at 0.1 A/g and a good cycling stability with a capacitance retention of higher than 86%after 5000 cycle have been achieved.When targeted for anode material for lithium ion batteries,the nanocubes deliver a high specific reversible capacity of more than 900 mA·h/g at 0.05C rate.The rate capability and cycling performance is also very promising as compared with the traditional graphite anode.
基金supported by the National Natural Science Foundation of China(21573083)the 1000 Young Talent(to Deli Wang)initiatory financial support from Huazhong University of Science and Technology(HUST)~~
文摘The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel boron nanoparticles supported on Vulcan carbon(Ni-B)via a simple,yet scalable,two-step chemical reduction–annealing strategy.The results of the electrochemical measurements suggest that the overpotentials of Ni-B-400 are 114 and 215 mV(in 1 mol L^–1 KOH)at current densities of 10 and 40 mA cm^?2,respectively,indicating an exceedingly good electrocatalytic activity in the HER.More importantly,Ni-B maintains a current density of 7.6 mA cm^-2 at an overpotential of 0.15 V for 20 h in the durability test.The excellent HER activity of Ni-B-400 is derived from the small particle size and the expanded lattice of Ni,which can optimize the hydrogen absorption energy and enhance the electrocatalytic properties.
基金supported by the National Natural Science Foundation of China(51421091,51332005,51572225,51272227, 51172197,51525205 and 51672239)the US National Science Foundation(EAR-1361276)
文摘Nanotwinned diamond(nt-diamond),which demonstrates unprecedented hardness and stability,is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature(HPHT).Its hardness and stability increase with decreasing twin thickness at the nanoscale.However,the formation mechanism of nanotwinning substructures within diamond nanograins is not well established.Here,we characterize the nanotwins in nt-diamonds synthesized under different HPHT conditions.Our observation shows that the nanotwin thickness reaches a minimum at ~20 GPa,below which phase-transformation twins and deformation twins coexist.Then,we use the density-functional-based tight-binding method and kinetic dislocation theory to investigate the subsequent plastic deformation mechanism in these pre-existing phase-transformation diamond twins.Our results suggest that pressure-dependent conversion of the plastic deformation mechanism occurs at a critical synthetic pressure for nt-diamond,which explains the existence of the minimum twin thickness.Our findings provide guidance on optimizing the synthetic conditions for fabricating nt-diamond with higher hardness and stability.