Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models w...Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models which can be applied to Fermi acting-energy between quark and gluon. This paper applies quantum electrodynamics in 2 + 1 dimensions (QED3) to the Fermi condensation problems. First, the Dyson-Schwinger equation which the fermions satisfy is constructed, and then the Fermi energy gap is solved. Theoretical calculations show that within the chirality limit, there exist three solutions for the energy gap; beyond the chirality limit, there are two solutions; all these solutions correspond to different fermion condensates. It can be concluded that the fermion condensates within the chirality limit can be used to analyze the existence of antiferromagnetic, pseudogap, and superconducting phases, and two fermion condensates are discovered beyond the chirality limit.展开更多
Eigenvalue-solution to those Hamiltonians involving non-commutative coordinates is not easily obtained. In this paper we apply the invariant eigen-operator (IEO) method to solving the energy spectrmn of the three-mo...Eigenvalue-solution to those Hamiltonians involving non-commutative coordinates is not easily obtained. In this paper we apply the invariant eigen-operator (IEO) method to solving the energy spectrmn of the three-mode harmonic oscillator in non-commutative space with the coordinate operators satisfying cyclic commutative relations, [X1, X2] = [X2, X3]=[X3, X1] = iθ, and this method seems effective and concise.展开更多
We examine the effect of adding mesons fo(975)and φ(1020)as well as the variety of U(the potential well depth ofin nuclear matter)from -10 MeV to -28 MeV on the extent of the particles participation and the propertie...We examine the effect of adding mesons fo(975)and φ(1020)as well as the variety of U(the potential well depth ofin nuclear matter)from -10 MeV to -28 MeV on the extent of the particles participation and the properties of the neutron star in the relativistic mean field model.We find that considering the contribution of fo and φ mesons,the equation of state of the neutron star turns soft,the maximum mass reduces while the corresponding radius increases.hyperons appear at lower density as Ubecomes deeper,and the variety of Uhas little effect on the equation of state and the properties of the neutron star.展开更多
We investigate the unconventional Landau levels of ultracold fermionic atoms on the two-dimensionalhoneycomb optical lattice subjected to an effective magnetic field,which is created with optical means.In the presence...We investigate the unconventional Landau levels of ultracold fermionic atoms on the two-dimensionalhoneycomb optical lattice subjected to an effective magnetic field,which is created with optical means.In the presenceof the effective magnetic field,the energy spectrum of the unconventional Landau levels is calculated.Furthermore,wepropose to detect the unconventional Landau levels with Bragg scattering techniques.展开更多
It is proposed that supersymmetry (SUSY) may be used to understand fermion mass hierarchies. A family symmetry ZSL is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks...It is proposed that supersymmetry (SUSY) may be used to understand fermion mass hierarchies. A family symmetry ZSL is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks at a high energy scale - 10^11 GeV. The electroweak energy scale- 100 GeV is unnaturally small No additional global symmetry, like the R-parlty, is imposed. The Yukawa couplings and R-parity violating couplings all take their natural values, which are О(10^0 -10^-2). Under the family symmetry, only the third generation charged ferrnions get their masses. This family symmetry is broken in the soft SUSY breaking terms, which result in a hierarchical pattern of the fermion masses. It turns out that for the charged leptons, the r mass is from the Higgs vacuum expectation value (VEV) and the sneutrino VEVs, the muon mass is due to the sneutrino VEVs, and the electron gains its mass due to both ZZL and SUSY hreaking. The large neutrino mixing are produced with neutralinos playing the partial role of right-handed neutrinos. │Ve3│, which is for Ve-Vr mixing, is expected to be about 0.1. For the quarks, the third generation masses are from the Higgs VEVs, the second generation masses are from quantum corrections, and the down quark mass due to the sneutrino VEVs. It explains me/ms, ms/me, md 〉 mu and so on. Other aspects of the model are discussed.展开更多
Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framewo...Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ^μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ^μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.展开更多
With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from th...With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from this facility in laser fields modelled by a circular polarized Gaussian laser pulse, we find the electron can obtain high energy gain from the laser pulse. The corresponding acceleration distance for this electron driven by the ascending part of the laser pulse is much longer than the Rayleigh length, and the light amplitude experienced on the electron is very weak when the laser pulse overtakes the electron. The electron is accelerated effectively and the deceleration can be neglected.For intensities around 1019 W·μm2/cm2,an electron's energy gain near 0.1 GeV can be realized when its initial energy is 4.5 MeV, and the final velocity of the energetic electron is parallel with the propagation axis. The energy gain can be up to 1 GeV if the intensity is about 1021 W·μm2/cm2.The final energy gain of the electron as a function of its initial conditions and the parameters of the laser beam has also been discussed.展开更多
Past research examining the content of media programming has demonstrated that women in the media tend to have to conform to certain beauty and body standards in order to succeed. Because this thin ideal is so weU-doc...Past research examining the content of media programming has demonstrated that women in the media tend to have to conform to certain beauty and body standards in order to succeed. Because this thin ideal is so weU-documented, there has been an interest in examining the effects of those portrayals on media consumers. Results from experimental studies suggest that the media can play an important role in causing body dissatisfaction among women. This research looks to build upon prior studies by exploring the role of familiarity with the mediated image in causing body dissatisfaction. Results suggest that in line with prior research, unfamiliar images of skinny women and moderately overweight women influenced women so that they felt worse about themselves. A similar result was obtained with familiar images of skinny celebrities. Familiar images of overweight celebrities, though, did not cause body dissatisfaction. Implications from these results are discussed.展开更多
We study the energy level statistics of the SO(5) limit of super-symmetry U(6/4) in odd-A nucleus using the interacting boson-fermion model. The nearest neighbor spacing distribution (NSD) and the spectral rigidity (...We study the energy level statistics of the SO(5) limit of super-symmetry U(6/4) in odd-A nucleus using the interacting boson-fermion model. The nearest neighbor spacing distribution (NSD) and the spectral rigidity (△3)are investigated, and the factors that affect the properties of level statistics are also discussed. The results show that the boson number N is a dominant factor. If N is small, both the interaction strengths of subgroups SOB(5) and SOBF(5)and the spin play important roles in the energy level statistics, however, along with the increase of N, the statistics distribution would tend to be in Poisson form.展开更多
We review some recent progresses on the study of ultracold Fermi gases with synthetic spin-orbit coupling.In particular,we focus on the pairing superfluidity in these systems at zero temperature.Recent studies have sh...We review some recent progresses on the study of ultracold Fermi gases with synthetic spin-orbit coupling.In particular,we focus on the pairing superfluidity in these systems at zero temperature.Recent studies have shown that different forms of spin-orbit coupling in various spatial dimensions can lead to a wealth of novel pairing superfluidity.A common theme of these variations is the emergence of new pairing mechanisms which are direct results of spin-orbit-coupling-modified single-particle dispersion spectra.As different configurations can give rise to single-particle dispersion spectra with drastic differences in symmetry,spin dependence and low-energy density of states,spin-orbit coupling is potentially a powerful tool of quantum control,which,when combined with other available control schemes in ultracold atomic gases,will enable us to engineer novel states of matter.展开更多
Topological materials, hosting topological nontrivial electronic band, have attracted widespread attentions. As an application of topology in physics, the discovery and study of topological materials not only enrich t...Topological materials, hosting topological nontrivial electronic band, have attracted widespread attentions. As an application of topology in physics, the discovery and study of topological materials not only enrich the existing theoretical framework of physics, but also provide fertile ground for investigations on low energy excitations, such as Weyl fermions and Majorana fermions, which have not been observed yet as fundamental particles. These quasiparticles with exotic physical properties make topological materials the cutting edge of scientific research and a new favorite of high tech. As a typical example, Majorana fermions, predicted to exist in the edge state of topological superconductors, are proposed to implement topological error-tolerant quantum computers. Thus, the detection of topological superconductivity has become a frontier in condensed matter physics and materials science. Here, we review a way to detect topological superconductivity triggered by the hard point contact: tip-induced superconductivity(TISC) and tip-enhanced superconductivity(TESC). The TISC refers to the superconductivity induced by a non-superconducting tip at the point contact on non-superconducting materials. We take the elaboration of the chief experimental achievement of TISC in topological Dirac semimetal Cd_3As_2 and Weyl semimetal Ta As as key components of this article for detecting topological superconductivity. Moreover, we also briefly introduce the main results of another exotic effect, TESC, in superconducting Au_2Pb and Sr_2RuO_4 single crystals, which are respectively proposed as the candidates of helical topological superconductor and chiral topological superconductor. Related results and the potential mechanism are conducive to improving the comprehension of how to induce and enhance the topological superconductivity.展开更多
We elucidate a recently emergent framework in unifying the two families of high temperature (high To) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the ...We elucidate a recently emergent framework in unifying the two families of high temperature (high To) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high Tc superconductors is a quasi two dimensional electronic environment in which the d-orbitals of cations that partic- ipate in strong in-plane couplings to the p-orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high Tc superconductors are so rare. An explicit prediction is made to realize high Tc superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.展开更多
The diffusive thermal conductivity tensor of p-wave superfluid at low temperatures is calculated by using the Boltzmann equation approach. We use the Sykes and Brooker procedure and show that Kxx is equal to Kyy and t...The diffusive thermal conductivity tensor of p-wave superfluid at low temperatures is calculated by using the Boltzmann equation approach. We use the Sykes and Brooker procedure and show that Kxx is equal to Kyy and these are related to T-1, also Kxx is proporated to T-3.展开更多
Vacancies are prevalent and versatile in solid-state physics and materials science.The role of vacancies in strongly correlated materials,however,remains uncultivated until now.Here,we report the discovery of an unpre...Vacancies are prevalent and versatile in solid-state physics and materials science.The role of vacancies in strongly correlated materials,however,remains uncultivated until now.Here,we report the discovery of an unprecedented vacancy state forming an extended buckled-honeycomb-vacancy(BHV)ordering in Ir16Sb18.Superconductivity emerges by suppressing the BHV ordering through squeezing of extra Ir atoms into the vacancies or isovalent Rh substitution.The phase diagram on vacancy ordering reveals the superconductivity competes with the BHV ordering.Further theoretical calculations suggest that this ordering originates from a synergistic effect of the vacancy formation energy and Fermi surface nesting with a wave vector of(1/3,1/3,0).The buckled structure breaks the crystal inversion symmetry and can mostly suppress the density of states near the Fermi level.The peculiarities of BHV ordering highlight the importance of"correlated vacancies"and may serve as a paradigm for exploring other non-trivial excitations and quantum criticality.展开更多
Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950 s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a ...Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950 s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s-and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s-and p-wave interactions, which is realizable in a two-component 40 K Fermi gas with close-by s-and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s-and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.展开更多
基金The National Natural Science Foundation of China(No.11047005)the Science Foundation of Southeast University
文摘Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models which can be applied to Fermi acting-energy between quark and gluon. This paper applies quantum electrodynamics in 2 + 1 dimensions (QED3) to the Fermi condensation problems. First, the Dyson-Schwinger equation which the fermions satisfy is constructed, and then the Fermi energy gap is solved. Theoretical calculations show that within the chirality limit, there exist three solutions for the energy gap; beyond the chirality limit, there are two solutions; all these solutions correspond to different fermion condensates. It can be concluded that the fermion condensates within the chirality limit can be used to analyze the existence of antiferromagnetic, pseudogap, and superconducting phases, and two fermion condensates are discovered beyond the chirality limit.
基金the President Foundation of the Chinese Academy of Sciencesthe Specialized Research Fund for the Doctoral Program of Higher Education
文摘Eigenvalue-solution to those Hamiltonians involving non-commutative coordinates is not easily obtained. In this paper we apply the invariant eigen-operator (IEO) method to solving the energy spectrmn of the three-mode harmonic oscillator in non-commutative space with the coordinate operators satisfying cyclic commutative relations, [X1, X2] = [X2, X3]=[X3, X1] = iθ, and this method seems effective and concise.
基金The project supported in part by the Postdoctoral Science Foundation of China under Grant No.2002032169+2 种基金National Natural Science Foundation of China under Grant No.10275037the Foundation for Doctorate Training Program of China under Grant No.2001005
文摘We examine the effect of adding mesons fo(975)and φ(1020)as well as the variety of U(the potential well depth ofin nuclear matter)from -10 MeV to -28 MeV on the extent of the particles participation and the properties of the neutron star in the relativistic mean field model.We find that considering the contribution of fo and φ mesons,the equation of state of the neutron star turns soft,the maximum mass reduces while the corresponding radius increases.hyperons appear at lower density as Ubecomes deeper,and the variety of Uhas little effect on the equation of state and the properties of the neutron star.
基金Supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University
文摘We investigate the unconventional Landau levels of ultracold fermionic atoms on the two-dimensionalhoneycomb optical lattice subjected to an effective magnetic field,which is created with optical means.In the presenceof the effective magnetic field,the energy spectrum of the unconventional Landau levels is calculated.Furthermore,wepropose to detect the unconventional Landau levels with Bragg scattering techniques.
基金The project supported by National Natural Science Foundation of China .Acknowledgments We would like to thank Yue-Liang Wu, Jin-Min Yang, Zhi-Zhong Xing, and Pyungwon Ko for helpful discussions.
文摘It is proposed that supersymmetry (SUSY) may be used to understand fermion mass hierarchies. A family symmetry ZSL is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks at a high energy scale - 10^11 GeV. The electroweak energy scale- 100 GeV is unnaturally small No additional global symmetry, like the R-parlty, is imposed. The Yukawa couplings and R-parity violating couplings all take their natural values, which are О(10^0 -10^-2). Under the family symmetry, only the third generation charged ferrnions get their masses. This family symmetry is broken in the soft SUSY breaking terms, which result in a hierarchical pattern of the fermion masses. It turns out that for the charged leptons, the r mass is from the Higgs vacuum expectation value (VEV) and the sneutrino VEVs, the muon mass is due to the sneutrino VEVs, and the electron gains its mass due to both ZZL and SUSY hreaking. The large neutrino mixing are produced with neutralinos playing the partial role of right-handed neutrinos. │Ve3│, which is for Ve-Vr mixing, is expected to be about 0.1. For the quarks, the third generation masses are from the Higgs VEVs, the second generation masses are from quantum corrections, and the down quark mass due to the sneutrino VEVs. It explains me/ms, ms/me, md 〉 mu and so on. Other aspects of the model are discussed.
基金Supported by the Natural Science Foundation of Liaoning Province of China under Grant No.2009A646
文摘Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ^μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ^μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.
基金中国科学院特别支持项目,国家自然科学基金,National High-Technology ICF Committee of China,the State Key Basic Research Special Foundation
文摘With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from this facility in laser fields modelled by a circular polarized Gaussian laser pulse, we find the electron can obtain high energy gain from the laser pulse. The corresponding acceleration distance for this electron driven by the ascending part of the laser pulse is much longer than the Rayleigh length, and the light amplitude experienced on the electron is very weak when the laser pulse overtakes the electron. The electron is accelerated effectively and the deceleration can be neglected.For intensities around 1019 W·μm2/cm2,an electron's energy gain near 0.1 GeV can be realized when its initial energy is 4.5 MeV, and the final velocity of the energetic electron is parallel with the propagation axis. The energy gain can be up to 1 GeV if the intensity is about 1021 W·μm2/cm2.The final energy gain of the electron as a function of its initial conditions and the parameters of the laser beam has also been discussed.
文摘Past research examining the content of media programming has demonstrated that women in the media tend to have to conform to certain beauty and body standards in order to succeed. Because this thin ideal is so weU-documented, there has been an interest in examining the effects of those portrayals on media consumers. Results from experimental studies suggest that the media can play an important role in causing body dissatisfaction among women. This research looks to build upon prior studies by exploring the role of familiarity with the mediated image in causing body dissatisfaction. Results suggest that in line with prior research, unfamiliar images of skinny women and moderately overweight women influenced women so that they felt worse about themselves. A similar result was obtained with familiar images of skinny celebrities. Familiar images of overweight celebrities, though, did not cause body dissatisfaction. Implications from these results are discussed.
文摘We study the energy level statistics of the SO(5) limit of super-symmetry U(6/4) in odd-A nucleus using the interacting boson-fermion model. The nearest neighbor spacing distribution (NSD) and the spectral rigidity (△3)are investigated, and the factors that affect the properties of level statistics are also discussed. The results show that the boson number N is a dominant factor. If N is small, both the interaction strengths of subgroups SOB(5) and SOBF(5)and the spin play important roles in the energy level statistics, however, along with the increase of N, the statistics distribution would tend to be in Poisson form.
基金supported by National Fundamental Research Program of China(Grant Nos.2011CB921200 and 2011CBA00200)National Key Basic Research Program(Grant No.2013CB922000)+4 种基金National Natural Science Foundation(Grant No.60921091)National Science Foundation of China(Grant Nos.10904172,11104158,11374177,11105134,1127409and 11374283)the Fundamental Research Funds for the Central Universities(Grant No.WK2470000006)the Research Funds of Renmin University of China(Grant No.10XNL016)the programs of Chinese Academy of Sciences
文摘We review some recent progresses on the study of ultracold Fermi gases with synthetic spin-orbit coupling.In particular,we focus on the pairing superfluidity in these systems at zero temperature.Recent studies have shown that different forms of spin-orbit coupling in various spatial dimensions can lead to a wealth of novel pairing superfluidity.A common theme of these variations is the emergence of new pairing mechanisms which are direct results of spin-orbit-coupling-modified single-particle dispersion spectra.As different configurations can give rise to single-particle dispersion spectra with drastic differences in symmetry,spin dependence and low-energy density of states,spin-orbit coupling is potentially a powerful tool of quantum control,which,when combined with other available control schemes in ultracold atomic gases,will enable us to engineer novel states of matter.
基金financially supported by the National Program on Key Basic Research Project(2018YFA0305604 and 2017YFA0303302)National Natural Science Foundation of China(11774008,381/0401210001)+2 种基金the Key Research Program of the Chinese Academy of Sciences(XDPB08-2)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University(KF201703)China Postdoctoral Science Foundation(130/0401130005)
文摘Topological materials, hosting topological nontrivial electronic band, have attracted widespread attentions. As an application of topology in physics, the discovery and study of topological materials not only enrich the existing theoretical framework of physics, but also provide fertile ground for investigations on low energy excitations, such as Weyl fermions and Majorana fermions, which have not been observed yet as fundamental particles. These quasiparticles with exotic physical properties make topological materials the cutting edge of scientific research and a new favorite of high tech. As a typical example, Majorana fermions, predicted to exist in the edge state of topological superconductors, are proposed to implement topological error-tolerant quantum computers. Thus, the detection of topological superconductivity has become a frontier in condensed matter physics and materials science. Here, we review a way to detect topological superconductivity triggered by the hard point contact: tip-induced superconductivity(TISC) and tip-enhanced superconductivity(TESC). The TISC refers to the superconductivity induced by a non-superconducting tip at the point contact on non-superconducting materials. We take the elaboration of the chief experimental achievement of TISC in topological Dirac semimetal Cd_3As_2 and Weyl semimetal Ta As as key components of this article for detecting topological superconductivity. Moreover, we also briefly introduce the main results of another exotic effect, TESC, in superconducting Au_2Pb and Sr_2RuO_4 single crystals, which are respectively proposed as the candidates of helical topological superconductor and chiral topological superconductor. Related results and the potential mechanism are conducive to improving the comprehension of how to induce and enhance the topological superconductivity.
基金supported by the National Basic Research Program of ChinaNational Natural Science Foundation of Chinathe Strategic Priority Research Program of Chinese Academy of Sciences
文摘We elucidate a recently emergent framework in unifying the two families of high temperature (high To) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high Tc superconductors is a quasi two dimensional electronic environment in which the d-orbitals of cations that partic- ipate in strong in-plane couplings to the p-orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high Tc superconductors are so rare. An explicit prediction is made to realize high Tc superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.
文摘The diffusive thermal conductivity tensor of p-wave superfluid at low temperatures is calculated by using the Boltzmann equation approach. We use the Sykes and Brooker procedure and show that Kxx is equal to Kyy and these are related to T-1, also Kxx is proporated to T-3.
基金support by the National Key Research and Development Program of China(2018YFA0704300)the National Natural Science Foundation of China(U1932217 and 11974246)+4 种基金the Natural Science Foundation of Shanghai(19ZR1477300)supported by MEXT Element Strategy Initiative to form Core Research Centerpartially supported by ChEM,SPST of ShanghaiTech University(02161943)Analytical Instrumentation Center(SPST-AIC10112914),SPST of ShanghaiTech Universitysupported by the National Natural Science Foundation of China(11888101)。
文摘Vacancies are prevalent and versatile in solid-state physics and materials science.The role of vacancies in strongly correlated materials,however,remains uncultivated until now.Here,we report the discovery of an unprecedented vacancy state forming an extended buckled-honeycomb-vacancy(BHV)ordering in Ir16Sb18.Superconductivity emerges by suppressing the BHV ordering through squeezing of extra Ir atoms into the vacancies or isovalent Rh substitution.The phase diagram on vacancy ordering reveals the superconductivity competes with the BHV ordering.Further theoretical calculations suggest that this ordering originates from a synergistic effect of the vacancy formation energy and Fermi surface nesting with a wave vector of(1/3,1/3,0).The buckled structure breaks the crystal inversion symmetry and can mostly suppress the density of states near the Fermi level.The peculiarities of BHV ordering highlight the importance of"correlated vacancies"and may serve as a paradigm for exploring other non-trivial excitations and quantum criticality.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374177,11374283,11421092,11522545,and11534014)the Programs of Chinese Academy of Sciences,and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences(Grant No.XDB01030200)
文摘Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950 s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s-and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s-and p-wave interactions, which is realizable in a two-component 40 K Fermi gas with close-by s-and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s-and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.