This paper focuses on the experimental investigation of the time-averaged and time-accurate aero- thermodynamics of a second stator tested in a 1.5 stage high-pressure turbine. The effect of clocking on aerodynamic an...This paper focuses on the experimental investigation of the time-averaged and time-accurate aero- thermodynamics of a second stator tested in a 1.5 stage high-pressure turbine. The effect of clocking on aerodynamic and heat transfer are investigated. Tests are performed under engine representative conditions in the VKI compression tube CT3. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the fh-st and the second stator. Probes located upstream and downstream of the second stator provide the thermodynamic conditions of the flow field. On the second stator airfoil, measurements are taken around the blade profile at 15, 50 and 85% span with pressure sensors and thin-film gauges. Both time-averaged and time-resolved aspects of the flow field are addressed. Regarding the time-averaged results, clocking effects are mainly observed within the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, hence affecting the overall airfoil performance. For one clocking position, the thermal load of the airfoil is noticeably reduced. Pressure fluctuations are attributed to the passage of the up- stream transonic rotor and its associated pressure gradients. The pattern of these fluctuations changes noticeably as a function of docking. The time-resolved variations of heat flux and static pressure are analyzed together showing that the major effect is due to a potential interaction. The time-resolved pressure distribution integrated along the second stator surface yields the unsteady forces on the vane. The magnitude of the unsteady force is very dependent on the clocking position.展开更多
The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(int...The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.展开更多
In order to improve the turbocharging process,a supersonic axial turbine stator was modelled numerically with a pulsatile inlet mass flow.The main objectives of the study were to find out how pulsation affects the flo...In order to improve the turbocharging process,a supersonic axial turbine stator was modelled numerically with a pulsatile inlet mass flow.The main objectives of the study were to find out how pulsation affects the flow field and the performance of the stator.At the beginning of the study,a supersonic turbine stator was modelled using three different techniques:quasi-steady,time-accurate with constant boundary conditions and time-accurate with a pulsatile inlet mass flow.The time-averaged and quasi-steady flow fields and performance were compared,and the flow field and stator performance with a pulsatile inlet mass flow was studied in detail at different time-steps.A hysteresis-like behaviour was captured when the total-to-static pressure ratio and efficiency were plotted as a function of the inlet mass flow over one pulse period.The total-to-static pressure ratio and efficiency followed the sinusoidal shape of the inlet flow as a function of time.It was also concluded that the stator efficiency decreases downstream from the stator trailing edge and the amplitude of the pulsating mass flow is decreased at the stator throat.展开更多
Recent studies have indicated that hypervelocity impacts by meteoroids and space debris can induce spacecraft anomalies. However, the basic physical process through which space debris impacts cause anomalies is not en...Recent studies have indicated that hypervelocity impacts by meteoroids and space debris can induce spacecraft anomalies. However, the basic physical process through which space debris impacts cause anomalies is not entirely clear. Currently, impact-generated plasma is thought to be the primary cause of electrical spacecraft anomalies, while the effects of impact-generated mechanical damage have rarely been researched. This paper presents new evidence showing that impact-generated mechanical damage strongly influences electrostatic discharge. Hypervelocity impact experiments were conducted in a plasma drag particle accelerator, using particles with diameters of 200–500 ?m and velocities of 2–7 km/s. The impact-generated mechanical damage on a specimen surface was measured by a stereoscopic microscope and 3D Profilometer and it indicated that microscopic irregularities around the impact crater could be responsible for local electric field enhancement. Furthermore, the influence of impact-generated mechanical damage on electrostatic discharge was simulated in an inverted potential gradient situation. The experimental results show that the electrostatic discharge voltage threshold was significantly reduced after the specimen was impacted by particles.展开更多
基金the European Commission as part of the BRITE EuRAM Ⅲ BE97-4440 project Turbine Aero-Thermal Extermal Flowthe contributions of the industrial partners ALSTOM POWER,FIAT AVIO,ITP,SNECMA and TURBOMECA
文摘This paper focuses on the experimental investigation of the time-averaged and time-accurate aero- thermodynamics of a second stator tested in a 1.5 stage high-pressure turbine. The effect of clocking on aerodynamic and heat transfer are investigated. Tests are performed under engine representative conditions in the VKI compression tube CT3. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the fh-st and the second stator. Probes located upstream and downstream of the second stator provide the thermodynamic conditions of the flow field. On the second stator airfoil, measurements are taken around the blade profile at 15, 50 and 85% span with pressure sensors and thin-film gauges. Both time-averaged and time-resolved aspects of the flow field are addressed. Regarding the time-averaged results, clocking effects are mainly observed within the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, hence affecting the overall airfoil performance. For one clocking position, the thermal load of the airfoil is noticeably reduced. Pressure fluctuations are attributed to the passage of the up- stream transonic rotor and its associated pressure gradients. The pattern of these fluctuations changes noticeably as a function of docking. The time-resolved variations of heat flux and static pressure are analyzed together showing that the major effect is due to a potential interaction. The time-resolved pressure distribution integrated along the second stator surface yields the unsteady forces on the vane. The magnitude of the unsteady force is very dependent on the clocking position.
基金supported by the Technology Agency of the Czech Republic under the grant TA03020277by the Czech Science Foundation under grant P101/12/1271
文摘The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.
基金supported by the Academy of Finland,The Finnish Graduate School in Computational Fluid Dynamics and the Henry Ford Foundation
文摘In order to improve the turbocharging process,a supersonic axial turbine stator was modelled numerically with a pulsatile inlet mass flow.The main objectives of the study were to find out how pulsation affects the flow field and the performance of the stator.At the beginning of the study,a supersonic turbine stator was modelled using three different techniques:quasi-steady,time-accurate with constant boundary conditions and time-accurate with a pulsatile inlet mass flow.The time-averaged and quasi-steady flow fields and performance were compared,and the flow field and stator performance with a pulsatile inlet mass flow was studied in detail at different time-steps.A hysteresis-like behaviour was captured when the total-to-static pressure ratio and efficiency were plotted as a function of the inlet mass flow over one pulse period.The total-to-static pressure ratio and efficiency followed the sinusoidal shape of the inlet flow as a function of time.It was also concluded that the stator efficiency decreases downstream from the stator trailing edge and the amplitude of the pulsating mass flow is decreased at the stator throat.
文摘Recent studies have indicated that hypervelocity impacts by meteoroids and space debris can induce spacecraft anomalies. However, the basic physical process through which space debris impacts cause anomalies is not entirely clear. Currently, impact-generated plasma is thought to be the primary cause of electrical spacecraft anomalies, while the effects of impact-generated mechanical damage have rarely been researched. This paper presents new evidence showing that impact-generated mechanical damage strongly influences electrostatic discharge. Hypervelocity impact experiments were conducted in a plasma drag particle accelerator, using particles with diameters of 200–500 ?m and velocities of 2–7 km/s. The impact-generated mechanical damage on a specimen surface was measured by a stereoscopic microscope and 3D Profilometer and it indicated that microscopic irregularities around the impact crater could be responsible for local electric field enhancement. Furthermore, the influence of impact-generated mechanical damage on electrostatic discharge was simulated in an inverted potential gradient situation. The experimental results show that the electrostatic discharge voltage threshold was significantly reduced after the specimen was impacted by particles.