一个连通图称为超边连通的,如果去掉每一个最小边割集后产生一个孤立点。一个超边连通图的超边连通度λ′(G)是指那些去掉后不产生孤立点的边割集的最小基数。考虑笛卡尔乘积图并证明:若对于每一个i=1,2,…,n,Gi是ki(≥1)正则,ki连通图...一个连通图称为超边连通的,如果去掉每一个最小边割集后产生一个孤立点。一个超边连通图的超边连通度λ′(G)是指那些去掉后不产生孤立点的边割集的最小基数。考虑笛卡尔乘积图并证明:若对于每一个i=1,2,…,n,Gi是ki(≥1)正则,ki连通图且满足某些给定的条件,则λ′(G1×G2×…×Gn)=2∑from i=1 to n(ki-2)。展开更多
文摘一个连通图称为超边连通的,如果去掉每一个最小边割集后产生一个孤立点。一个超边连通图的超边连通度λ′(G)是指那些去掉后不产生孤立点的边割集的最小基数。考虑笛卡尔乘积图并证明:若对于每一个i=1,2,…,n,Gi是ki(≥1)正则,ki连通图且满足某些给定的条件,则λ′(G1×G2×…×Gn)=2∑from i=1 to n(ki-2)。