Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calc...Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy ECN = 15 ± 1 MeV, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (Bf ) and neutron separation energies (S1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β24-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the In cross-sections are addressed for ZCN = 104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto ZCN = 109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia (INS) is also investigated at these energies.展开更多
基金Supported by the Council of Scientific and Industrial Research(CSIR),in the Form of Research Project Grant No.03(1341)/15/EMR-Ⅱ and to DST,New DelhiINSPIRE-Fellowship Grant No.DST/INSPIRE/03/2015/000199
文摘Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy ECN = 15 ± 1 MeV, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (Bf ) and neutron separation energies (S1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β24-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the In cross-sections are addressed for ZCN = 104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto ZCN = 109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia (INS) is also investigated at these energies.