期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
阿拉伯,摩洛哥和马里超铁镁质岩石金的来源模式
1
作者 雷.,几布 贾斌 《东北地质科技情报》 1990年第2期53-53,52,共2页
关键词 超铁镁质岩石 来源
下载PDF
芬兰马斯塔瓦纳磁铁矿-钛铁矿矿床地质特征与成因
2
作者 成曦晖 徐九华 张辉 《地质通报》 CAS CSCD 北大核心 2015年第6期1119-1132,共14页
马斯塔瓦纳磁铁矿-钛铁矿床位于芬兰北部,属于芬诺斯堪迪亚地盾,辉长岩是主要的含矿岩体。矿石类型主要为钛磁铁矿,含矿岩石为含钛磁铁矿、钒钛磁铁矿辉长岩。浸染状矿石金属矿物以钛磁铁矿为主,次为钛铁矿。地球化学特征研究表明,马斯... 马斯塔瓦纳磁铁矿-钛铁矿床位于芬兰北部,属于芬诺斯堪迪亚地盾,辉长岩是主要的含矿岩体。矿石类型主要为钛磁铁矿,含矿岩石为含钛磁铁矿、钒钛磁铁矿辉长岩。浸染状矿石金属矿物以钛磁铁矿为主,次为钛铁矿。地球化学特征研究表明,马斯塔瓦纳矿床的Zr、Hf、U、Th在含矿辉长岩中含量非常稳定,均小于10×10-6,反映了岩浆成因的特征。由于马斯塔瓦纳矿床形成时构造环境不稳定,原始岩浆来不及长期彻底地分异,导致岩石的地球化学参数等均具有过渡特征。芬兰马斯塔瓦纳矿床的成岩成矿过程主要分为2个期次:成岩期(形成辉长岩体)和主成矿期(岩浆期形成铁矿)。初步研究表明,芬兰马斯塔瓦纳铁-钛-钒矿床与国内的"大庙式"和"攀西式"铁矿有所不同,2个国内矿床处于相对稳定的板内构造环境,而芬兰马斯塔瓦纳矿床产于特殊的造山带而非稳定的克拉通构造环境。 展开更多
关键词 钒钛磁铁矿 铁镁超铁镁质侵入岩 矿床成因 马斯塔瓦腊 芬兰
下载PDF
北山南部玻基纯橄岩的发现及其岩石学和地球化学特征 被引量:2
3
作者 赵振明 计文化 李文明 《地质论评》 CAS CSCD 北大核心 2018年第5期1055-1077,共23页
北山南部地区,二叠纪闪长岩岩体的西北部,发现玻基纯橄岩[Vitric Dunite;Meimechite,Меймечит;中文亦有音译为麦美奇岩]和蚀变玻基纯橄岩。①玻基纯橄岩样品呈致密块状,浅灰绿色,表面可见清楚的粒状斑晶矿物和黑色胶结物,具发... 北山南部地区,二叠纪闪长岩岩体的西北部,发现玻基纯橄岩[Vitric Dunite;Meimechite,Меймечит;中文亦有音译为麦美奇岩]和蚀变玻基纯橄岩。①玻基纯橄岩样品呈致密块状,浅灰绿色,表面可见清楚的粒状斑晶矿物和黑色胶结物,具发丝一样的小条带。蚀变玻基纯橄岩样品呈致密块状,深黑色,局部具细小条带。显微镜下,前者主要矿物橄榄石为斑状结构;后者主要矿物橄榄石多蚀变为蛇纹石,表现为变余斑状结构,斑晶是蛇纹石化的橄榄石假像。基质均为玻璃质结构。②X射线衍射分析表明:橄榄石为镁橄榄石[forsterite,(Mg_(1.8)Fe_(0.2))(SiO_4)],蛇纹石为利蛇纹石{lizardite,(Mg,Al)_3[(Si,Fe)_2O_5](OH)_4}。③电子探针检测,磁铁矿呈细条纹状,基质矿物有绿泥石、绿帘石、黝帘石、角闪石、钛铁矿、褐铁矿、镍黄铁矿、斜长石、尖晶石、金云母等。④样品岩石化学分析,主元素氧化物的含量分别为,SiO_2为36.40%~37.29%,Al_2O_3为2.61%~4.70%,TiO_2为0.058%~0.22%,MgO为33.30%~35.36%,Fe_2O_3+FeO为10.51%~12.89%,Na_2O+K_2O为0.03%~0.14%,为超铁镁质超基性喷出岩。Mg#为83.5~86.5,δSr为1.14~4.61,Sr/Y为5.70~42.74。稀土元素∑REE为2.18~9.71,δEu为0.68~2.43,La/Yb为0.90~10.00。微量元素和稀土元素具有原始地幔的岩石化学特征。⑤原始岩浆可能经历了结晶分异过程,并可能在裂谷构造环境形成。⑥本文发现的玻基纯橄岩,类似于典型的西伯利亚麦美奇河流域和勘察加半岛的低钛"麦美奇岩"。玻基纯橄岩在该地区的发现,为该地区岩浆的形成和演化研究及铜镍矿的找矿和勘探工作,提供了重要的岩石学依据。 展开更多
关键词 北山南部 超铁镁质 玻基纯橄岩(麦美奇岩) 岩石学 地球化学
下载PDF
Study of oxygen fugacity during magma evolution and ore genesis in the Hongge mafic–ultramafic intrusion, the Panxi region, SW China 被引量:3
4
作者 Mingyang Liao Yan Tao +2 位作者 Xieyan Song Yubang Li Feng Xiong 《Acta Geochimica》 EI CAS CSCD 2016年第1期25-42,共18页
Economic concentrations of Fe–Ti oxides occurring as massive layers in the middle and upper parts of the Hongge intrusion are different from other layered intrusions(Panzhihua and Baima) in the Emeishan large igneous... Economic concentrations of Fe–Ti oxides occurring as massive layers in the middle and upper parts of the Hongge intrusion are different from other layered intrusions(Panzhihua and Baima) in the Emeishan large igneous province, SW China. This paper reports on the new mineral compositions of magnetite and ilmenite for selected cumulate rocks and clinopyroxene and plagioclase for basalts. We use these data to estimate the oxidation state of parental magmas and during ore formation to constrain the factors leading to the abundant accumulation of Fe–Ti oxides involved with the Hongge layered intrusion. The results show that the oxygen fugacities of parental magma are in the range of FMQ-1.56 to FMQ+0.14, and the oxygen fugacities during the ore formation of the Fe–Ti oxides located in the lower olivine clinopyroxenite zone(LOZ) and the middle clinopyroxenite zone(MCZ) of the Hongge intrusion are in the range of FMQ-1.29 to FMQ-0.2 and FMQ-0.49 to FMQ+0.82, respectively.The MELTS model demonstrates that, as the oxygen fugacity increases from the FMQ-1 to FMQ+1, the proportion of crystallization magnetite increases from 11 % to 16 % and the crystallization temperature of the Fe–Ti oxides advances from 1134 to 1164 °C. The moderate oxygen fugacities for the Hongge MCZ indicate that the oxygen fugacity was not the only factor affecting the crystallization of Fe–Ti oxides. We speculated that theinitial anhydrous magma that arrived at the Hongge shallow magma chamber became hydrous by attracting the H_2O of the strata. In combination with increasing oxygen fugacities from the LOZ(FMQ-1.29 to FMQ-0.2) to the MCZ(FMQ-0.49 to FMQ+0.82), these two factors probably account for the large-scale Fe–Ti oxide ore layers in the MCZ of the Hongge intrusion. 展开更多
关键词 Oxygen fugacity Fe–Ti oxide deposit Basalts Emeishan large igneous province Hongge layered intrusion
下载PDF
Petroqenesis of Subduction Zone and Dunite Bodies
5
作者 Ayse Didem Klh9 《Journal of Earth Science and Engineering》 2012年第7期377-386,共10页
The dunite bodies, which extend as the direction of W-E, are exposed to the southeast of Elazlg located within the Eastern Taurus Belt of Turkey. Mafic-Ultramafic section in the Guleman ophiolite consists ofdunite whi... The dunite bodies, which extend as the direction of W-E, are exposed to the southeast of Elazlg located within the Eastern Taurus Belt of Turkey. Mafic-Ultramafic section in the Guleman ophiolite consists ofdunite which containing disseminated chromites, wehrlite, gabbros (isotrope gabbro and layered gabbro) and clinopyroxenite. Dunite blocks above the harzburgite massif have irregular contacts with the enclosing peridotites. Dunite blocks are generally around a few of meters. Dunite blocks consist of gabbro and pyroxenite patches. The origin of dunite blocks are belong to the transition zone of harzburgitic ophiolites which is located at the base of the mafic layered section. They are entirely or largely magmatic formed by olivine and chromite ponds at the base of the crustal magma chamber. The rather around of rock pieces within dunite bodies are foliated such as features have been ascribed to the ophiolite being impregnated by and reacting with a melt. Rocks in the bodies show depleted in incompatible trace elements such as Ba, Nbet al., characteristic of subduction related magma. Furthermore, the high LREE/HREE and high Rb/Th ratios indicates a mantle that has been enrichmented by subduction. As a result, isotopic data, petrographic and geochemical of bodies's result suggest a parental magma derived from an enrichmed source of subduction zone. A few meters of the large dunite bodies, and ascribes to the central dunites a cumulative origin by fractionation from a picritic melt. 展开更多
关键词 Neotethyan TURKEY dnite bodies subduction zone OPHIOLITE geochemistry.
下载PDF
Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China 被引量:30
6
作者 LIU Liang KANG Lei +1 位作者 CAO YuTing YANG WenQiang 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第9期1513-1522,共10页
Four episodes of granitic rocks at 517, 501-496, 462-451, and 426-385 Ma occurred in the South Altyn subduction-collision complex. The first episode of granite emplacement predates the formation of the ophiolite type ... Four episodes of granitic rocks at 517, 501-496, 462-451, and 426-385 Ma occurred in the South Altyn subduction-collision complex. The first episode of granite emplacement predates the formation of the ophiolite type mafic rock (〉500 Ma), and the three subsequent episodes can be temporally correlated to high-pressure (HP) to ultrahigh-pressure (UHP) metamorphism at ca 500 Ma, retrograde granulite-facies metamorphism at ca. 450 Ma, and amphibolite-facies metamorphism at ca. 420 Ma, re- spectively. A comprehensive study of these granitic rocks, along with the regional geological background, mafic-ultramafic rocks, and HP-UHP metamorphism, indicates that the four episodes of granitic magmatism are sequentially derived from the partial melting of the earlier subducted oceanic crust at 517 Ma, the thickened continental crust due to continental subduction at ca. 500 Ma, the mid-upper crust in response to slab breakoff at ca. 450 Ma, and the tectonic transition from contraction to extension at ca. 420 Ma. The formation age of 517 Ma for oceanic adakite provides a direct constraint on the time of the oce- anic subduction in South Altyn. In addition, there is a ca. i0 Myr interval between the oceanic subduction to the continental deep subduction, suggesting that the Early Paleozoic tectonic evolution might have been a successive process in South Altyn. The four episodes of formation of granitic rocks, mafic-ultramafic rocks, and HP-UHP metamorphic rocks have fully recorded the tectonic evolution, beginning with the oceanic subduction, followed by continental subduction, and later exhumation dur- ing the Early Paleozoic in South Altyn. 展开更多
关键词 South Altyn granitic magmatism oceanic subduction continental deep subduction tectonic evolution
原文传递
Geochemical characteristics and tectonic setting of the Middle Permian Tiaohu Formation mafic-ultramafic rocks of Santanghu area, Xinjiang, Northwest China 被引量:7
7
作者 WANG ShuangShuang LIU YiQun +3 位作者 ZHANG HongFu ZHOU DingWu JIAO Xin NAN Yun 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第11期1924-1938,共15页
Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu ... Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu area is exposed a thick succession of the Middle Permian basalts, including a small amount of picritic basalts and andesites, known as the Tiaohu Formation. The picritic basalts contain cumulate olivine, and have whole-rock Mg# up to 0.68–0.77; the basalts exhibit porphyritic or doleritic textures, and have relatively low Mg# of 0.41–0.54, typical of evolved magmas. The mafic-ultramafic rocks of the Tiaohu Formation are slightly enriched in Light Rare Earth Elements(LREEs), and exhibit negative Nb and Ti anomalies. They also have high Ti O2 content, and Nb/Y and Zr/Yb ratios greater than those of island arc volcanic rocks. Relatively low initial Sr isotopic ratios and high positive εNd(t) and εHf(t) values argue against contamination by ancient continental crust, and suggest formation of the Tiaohu Formation by partial melting of relatively refractory depleted lithospheric mantle that underwent metasomatism and extraction by fluid from the subducted slab. In addition, up to 38% olivine in picritic basalts indicates high-degree partial melting of lithospheric mantle, and the underlying Lucaogou Formation contains fragments of ultra-alkaline magmatic rocks that originated in the deep mantle. These observations imply wide-spread underplating in Santanghu area, which may have been associated with a mantle plume. 展开更多
关键词 Central Asian Orogenic Belt Santanghu Basin Middle Permian picritic basalts lithospheric mantle
原文传递
Zircon U/Pb dating and Hf-O isotopes of the Zhouan ultramafic intrusion in the northern margin of the Yangtze Block,SW China:Constraints on the nature of mantle source and timing of the supercontinent Rodinia breakup 被引量:12
8
作者 WANG MengXi WANG ChristinaYan ZHAO JunHong 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第3期777-787,共11页
The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning a... The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning and have Th/U ratios ranging from 0.8 to 10.6, indicating a magmafic origin. The weighted average 206pb/238U age is 637±4 Ma (2σ, n=15), which can be considered as the crystallization age of the Zhouan intrusion. Zircon grains have δ18O values ranging from 5.2‰to 7.0‰, with an averaged value of 5.8±0.4‰(1 or, n=33), similar to the mantle δ18O value of zircon. Their 176Hf/177Hf(t) ratios range from 0.282410 to 0.282594 with εHf(t) values ranging from 1.3 to 7.6, lower than the corresponding value of the depleted mantle (~15), indicating an enriched mantle source. The enriched mantle source may have generated from a metasomatized lithospheric mantle with subducted slab. A number of -635 Ma mafic-ultramafic intrusions in the Suizao basin are associated with coeval bimodal volcanics of the Yaolinghe Formation, indicating a continental rift setting. The ~635 Ma magmafic event in this region may represent the product of the last breakup of the Rodinia supercontinent in the northern margin of the Yangtze Block at Neoproterozoic. 展开更多
关键词 zircon Hf-O isotopes Zhouan ultramafic intrusion northern margin of the Yangtze Block Neoproterozoic
原文传递
Volatile and C-H-O isotopic compositions of giant Fe-Ti-V oxide deposits in the Panxi region and their implications for the sources of volatiles and the origin of Fe-Ti oxide ores 被引量:15
9
作者 WANG Christina Yan 《Science China Earth Sciences》 SCIE EI CAS 2012年第11期1782-1795,共14页
The Panzhihua,Hongge,and Baima Fe-Ti-V oxide deposits in the Panzhihua-Xichang(Panxi) region are hosted in large layered mafic-ultramafic intrusions.The layered intrusions intrude either the Neoproterozoic Dengying Fo... The Panzhihua,Hongge,and Baima Fe-Ti-V oxide deposits in the Panzhihua-Xichang(Panxi) region are hosted in large layered mafic-ultramafic intrusions.The layered intrusions intrude either the Neoproterozoic Dengying Formation,composed mainly of limestone,or the Paleoproterozoic Hekou Formation,composed of meta-sedimentary-volcanic rocks.It remains unclear if the wall rocks have been involved during the fractionation of magmas and have affected the sequence of crystallization of Fe-Ti oxide.Volatiles and their C-H-O isotopic compositions of magnetite,apatite,clinopyroxene,and plagioclase of different types of ores from the three intrusions are analyzed using a technique of stepwise heating mass spectrometer to evaluate the role of wall rocks in the formation of Fe-Ti oxide ores.Volatiles released from magnetite are composed mainly of H 2 O and CO 2,whereas the other minerals are composed mainly of H 2 O,CO 2 and H 2.At 800-1200°C temperature interval,the average 13 C values of CO 2 of all the minerals from the three intrusions range from 7.7‰ to 13.5‰ and the average 18 O CO 2 values from 19.1‰ to 19.5‰,which are scattered in a mixed field with basalt and the two types of wall rocks as end-members,indicating that CO 2 from the wall rocks may have been involved in the magmas from which the three intrusions formed.At 400-800 C temperature interval,both 13 C values(13.7‰ to 17.9‰ on the average) and 18 O values(16.2‰ to 19.2‰ on the average) of CO 2 of all the minerals are lower than those for 800-1200 C temperature interval,and much closer to the values of the wall rocks.Abundant H 2 O released at the 400-800 C temperature interval has relatively low D values ranging from 90‰ to 115‰,also indicating the involvement of fluids from the wall rocks.The average bulk contents of volatiles released from magnetite of the Hongge,Baima,and Panzhihua intrusions are 4891,2996,and 1568 mm 3 STP/g,respectively,much higher than those released from other minerals in total,which are 382,600,and 379 mm 3 STP/g,respectively,indicating that magnetite crystallized from magmas with much more volatiles than other minerals.This can be interpreted as that crystallization of clinopyroxene and plagioclase in the early fractionation of magmas resulted in volatiles such as H 2 O that were eventually enriched in the residual magmas and,at the same time,fluids from the wall rocks may have been involved in the magmas and were trapped in magnetite,which crystallized later than clinopyroxene and plagioclase. 展开更多
关键词 magnetite VOLATILES C-H-O isotope Fe-Ti-V oxide ore Panxi region
原文传递
Application of the modern ophiolite concept with special reference to Precambrian ophiolites 被引量:4
10
作者 Timothy M. KUSKY WANG Lu +3 位作者 Yildirim DILEK Paul ROBINSON PENG SongBai HUANG XuYa 《Science China Earth Sciences》 SCIE EI CAS 2011年第3期315-341,共27页
Much has been learned in the past 40 years about the great diversity of the internal structure and geochemical compositions of Phanerozoic ophiolites, indicating that these on-land fragments of ancient oceanic lithosp... Much has been learned in the past 40 years about the great diversity of the internal structure and geochemical compositions of Phanerozoic ophiolites, indicating that these on-land fragments of ancient oceanic lithosphere formed in distinctly different tectonic settings during their igneous evolution. Recent studies in Archean and Proterozoic greenstone belts have shown that the Precambrian rock record may also include exposures of a diverse suite of ophiolite complexes as part of craton development in the early history of the Earth. We review the salient features of the Precambrian ophiolite record to highlight what has been learned about Precambrian oceanic spreading systems since the original Penrose definition of ophiolites in 1972. Some of the diagnostic, characteristic, typical, and rare aspects of ophiolites of all ages are presented in a table in order to help determine if tectonically deformed and metamophosed sequences in Precambrian shield areas may be considered as ophiolites. The results of this comparative study are important in that they enable researchers to more realistically characterize allochthonous mafic/ultramafic rock sequences as ophiolitic or non-ophiolitic. This approach is more deterministic in contrast to some other arbitrary classification schemes requiring three or four of the Penrose-style ophiolitic units to be present in the Precambrian record for a specific rock sequence to be considered ophiolitic. Once these tectonic fragments are recognized as remnants of ancient oceanic lithosphere, great progress shall be made in understanding early Earth history. We discuss the significance and implications of the Precambrian ophiolite record to constrain the mode and nature of the plate tectonics that operated in deep time. 展开更多
关键词 OPHIOLITE PRECAMBRIAN CRATON greenstone belt
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部