Four episodes of granitic rocks at 517, 501-496, 462-451, and 426-385 Ma occurred in the South Altyn subduction-collision complex. The first episode of granite emplacement predates the formation of the ophiolite type ...Four episodes of granitic rocks at 517, 501-496, 462-451, and 426-385 Ma occurred in the South Altyn subduction-collision complex. The first episode of granite emplacement predates the formation of the ophiolite type mafic rock (〉500 Ma), and the three subsequent episodes can be temporally correlated to high-pressure (HP) to ultrahigh-pressure (UHP) metamorphism at ca 500 Ma, retrograde granulite-facies metamorphism at ca. 450 Ma, and amphibolite-facies metamorphism at ca. 420 Ma, re- spectively. A comprehensive study of these granitic rocks, along with the regional geological background, mafic-ultramafic rocks, and HP-UHP metamorphism, indicates that the four episodes of granitic magmatism are sequentially derived from the partial melting of the earlier subducted oceanic crust at 517 Ma, the thickened continental crust due to continental subduction at ca. 500 Ma, the mid-upper crust in response to slab breakoff at ca. 450 Ma, and the tectonic transition from contraction to extension at ca. 420 Ma. The formation age of 517 Ma for oceanic adakite provides a direct constraint on the time of the oce- anic subduction in South Altyn. In addition, there is a ca. i0 Myr interval between the oceanic subduction to the continental deep subduction, suggesting that the Early Paleozoic tectonic evolution might have been a successive process in South Altyn. The four episodes of formation of granitic rocks, mafic-ultramafic rocks, and HP-UHP metamorphic rocks have fully recorded the tectonic evolution, beginning with the oceanic subduction, followed by continental subduction, and later exhumation dur- ing the Early Paleozoic in South Altyn.展开更多
Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu ...Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu area is exposed a thick succession of the Middle Permian basalts, including a small amount of picritic basalts and andesites, known as the Tiaohu Formation. The picritic basalts contain cumulate olivine, and have whole-rock Mg# up to 0.68–0.77; the basalts exhibit porphyritic or doleritic textures, and have relatively low Mg# of 0.41–0.54, typical of evolved magmas. The mafic-ultramafic rocks of the Tiaohu Formation are slightly enriched in Light Rare Earth Elements(LREEs), and exhibit negative Nb and Ti anomalies. They also have high Ti O2 content, and Nb/Y and Zr/Yb ratios greater than those of island arc volcanic rocks. Relatively low initial Sr isotopic ratios and high positive εNd(t) and εHf(t) values argue against contamination by ancient continental crust, and suggest formation of the Tiaohu Formation by partial melting of relatively refractory depleted lithospheric mantle that underwent metasomatism and extraction by fluid from the subducted slab. In addition, up to 38% olivine in picritic basalts indicates high-degree partial melting of lithospheric mantle, and the underlying Lucaogou Formation contains fragments of ultra-alkaline magmatic rocks that originated in the deep mantle. These observations imply wide-spread underplating in Santanghu area, which may have been associated with a mantle plume.展开更多
基金supported by the National Basic Research Program of China(Grant No.2015CB856103)the National Natural Science Foundation of China(Grant Nos.41430209,4140020262&41421002)Regional Geological Survey Project of Key Area in Western Kunlun-South Altyn from China Geological Survey and Special Fund from the State Key Laboratory of Continental Dynamics,Northwest University
文摘Four episodes of granitic rocks at 517, 501-496, 462-451, and 426-385 Ma occurred in the South Altyn subduction-collision complex. The first episode of granite emplacement predates the formation of the ophiolite type mafic rock (〉500 Ma), and the three subsequent episodes can be temporally correlated to high-pressure (HP) to ultrahigh-pressure (UHP) metamorphism at ca 500 Ma, retrograde granulite-facies metamorphism at ca. 450 Ma, and amphibolite-facies metamorphism at ca. 420 Ma, re- spectively. A comprehensive study of these granitic rocks, along with the regional geological background, mafic-ultramafic rocks, and HP-UHP metamorphism, indicates that the four episodes of granitic magmatism are sequentially derived from the partial melting of the earlier subducted oceanic crust at 517 Ma, the thickened continental crust due to continental subduction at ca. 500 Ma, the mid-upper crust in response to slab breakoff at ca. 450 Ma, and the tectonic transition from contraction to extension at ca. 420 Ma. The formation age of 517 Ma for oceanic adakite provides a direct constraint on the time of the oce- anic subduction in South Altyn. In addition, there is a ca. i0 Myr interval between the oceanic subduction to the continental deep subduction, suggesting that the Early Paleozoic tectonic evolution might have been a successive process in South Altyn. The four episodes of formation of granitic rocks, mafic-ultramafic rocks, and HP-UHP metamorphic rocks have fully recorded the tectonic evolution, beginning with the oceanic subduction, followed by continental subduction, and later exhumation dur- ing the Early Paleozoic in South Altyn.
基金supported by the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20126101110020)the National Natural Science Foundation of China(Grant No.41272116)
文摘Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu area is exposed a thick succession of the Middle Permian basalts, including a small amount of picritic basalts and andesites, known as the Tiaohu Formation. The picritic basalts contain cumulate olivine, and have whole-rock Mg# up to 0.68–0.77; the basalts exhibit porphyritic or doleritic textures, and have relatively low Mg# of 0.41–0.54, typical of evolved magmas. The mafic-ultramafic rocks of the Tiaohu Formation are slightly enriched in Light Rare Earth Elements(LREEs), and exhibit negative Nb and Ti anomalies. They also have high Ti O2 content, and Nb/Y and Zr/Yb ratios greater than those of island arc volcanic rocks. Relatively low initial Sr isotopic ratios and high positive εNd(t) and εHf(t) values argue against contamination by ancient continental crust, and suggest formation of the Tiaohu Formation by partial melting of relatively refractory depleted lithospheric mantle that underwent metasomatism and extraction by fluid from the subducted slab. In addition, up to 38% olivine in picritic basalts indicates high-degree partial melting of lithospheric mantle, and the underlying Lucaogou Formation contains fragments of ultra-alkaline magmatic rocks that originated in the deep mantle. These observations imply wide-spread underplating in Santanghu area, which may have been associated with a mantle plume.