采用碳酸盐共沉淀法通过调节NH_3·H_2O用量来实现可控制备超高倍率纳米结构LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料。NH_3·H_2O用量会对颗粒的形貌、粒径、晶体结构以及材料电化学性能产生较大的影响。X射线衍射(XRD)分析和...采用碳酸盐共沉淀法通过调节NH_3·H_2O用量来实现可控制备超高倍率纳米结构LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料。NH_3·H_2O用量会对颗粒的形貌、粒径、晶体结构以及材料电化学性能产生较大的影响。X射线衍射(XRD)分析和扫描电镜(SEM)结果表明,随着NH_3·H_2O用量的降低,一次颗粒形貌由纳米片状逐渐过渡到纳米球状,且nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品晶体层状结构最完善、Li^+/Ni^(2+)阳离子混排程度最低。电化学性能测试结果也证实了nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品具有最优异的循环稳定性和超高倍率性能。具体而言,在2.7~4.3 V,1C下循环300次后的放电比容量为119 m Ah·g^(-1),容量保持率为81%,中值电压基本无衰减(保持率为97%)。在100C(18 Ah·g^(-1))的超高倍率下,放电比容量还能达到56 m Ah·g^(-1),具有应用于高功率型锂离子电池的前景。此NH_3·H_2O比例值对于共沉淀法制备其他高倍率、高容量的正/负极氧化物材料具有一定的工艺参考价值。展开更多
文摘采用碳酸盐共沉淀法通过调节NH_3·H_2O用量来实现可控制备超高倍率纳米结构LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料。NH_3·H_2O用量会对颗粒的形貌、粒径、晶体结构以及材料电化学性能产生较大的影响。X射线衍射(XRD)分析和扫描电镜(SEM)结果表明,随着NH_3·H_2O用量的降低,一次颗粒形貌由纳米片状逐渐过渡到纳米球状,且nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品晶体层状结构最完善、Li^+/Ni^(2+)阳离子混排程度最低。电化学性能测试结果也证实了nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品具有最优异的循环稳定性和超高倍率性能。具体而言,在2.7~4.3 V,1C下循环300次后的放电比容量为119 m Ah·g^(-1),容量保持率为81%,中值电压基本无衰减(保持率为97%)。在100C(18 Ah·g^(-1))的超高倍率下,放电比容量还能达到56 m Ah·g^(-1),具有应用于高功率型锂离子电池的前景。此NH_3·H_2O比例值对于共沉淀法制备其他高倍率、高容量的正/负极氧化物材料具有一定的工艺参考价值。