期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
超大直径、超高载荷环形导轨低频淬火工艺技术研究 被引量:1
1
作者 张虎 张艳红 《新技术新工艺》 2016年第11期76-79,共4页
针对超大直径、超高载荷环形导轨低频淬火工艺技术展开研究,根据零件结构特点及技术要求,分析了工艺技术难点,提出了一系列参数和工艺技术假设,在相关试验的基础上,获得了超大直径、超高载荷环形导轨低频的淬火工艺参数。
关键词 超大直径 超高载荷 环形导轨 低频淬火
下载PDF
GIGACYCLE FATIGUE BEHAVIOR OF CAST ALUMINUM IN TENSION AND TORSION LOADING 被引量:3
2
作者 薛红前 吴铁鹰 Bathias C 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期32-37,共6页
An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion f... An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion fatigue system is presented.The effects of loading condition and frequency on the very high cycle fatigue(VHCF)are investigated.The cyclic loading in axial and torsion at 35 Hz and 20 kHz with stress ratio R=-1 is used respectively to demonstrate the effect of loading condition.S-N curves show that the fatigue failure occurs in the range of 105—1010 cycles in axial or torsion loading and the asymptote of S-N curve is inclined,but no fatigue limit exists under the torsion and axial loading condition.The fatigue fracture surface shows that the fatigue crack initiates from the specimen surface subjected to the cyclic torsion loading.It is different from the fatigue fracture characteristic in axial loading in which fatigue crack initiates from subsurface defect in very high cycle regime.The fatigue initiation is on the maximum shear plane,the overall crack orientation is on a typical spiral 45° to the fracture plane and it is the maximum principle stress plane.The clear shear strip in the torsion fatigue fracture surface shows that the torsion fracture is the shear fracture. 展开更多
关键词 fatigue testing torsion fatigue very high cycle fatigue(VHCF) torsion loading cast aluminum
下载PDF
Across-wind loads and effects of super-tall buildings and structures 被引量:4
3
作者 GU Ming QUAN Yong 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第10期2531-2541,共11页
Across-wind loads and effects have become increasingly important factors in the structural design of super-tall buildings and structures with increasing height. Across-wind loads and effects of tall buildings and stru... Across-wind loads and effects have become increasingly important factors in the structural design of super-tall buildings and structures with increasing height. Across-wind loads and effects of tall buildings and structures are believed to be excited by inflow turbulence, wake, and inflow-structure interaction, which are very complicated. Although researchers have been focusing on the problem for over 30 years, the database of across-wind loads and effects and the computation methods of equivalent static wind loads have not yet been developed, most countries having no related rules in the load codes. Research results on the across-wind effects of tall buildings and structures mainly involve the determination of across-wind aerodynamic forces and across-wind aerodynamic damping, development of their databases, theoretical methods of equivalent static wind loads, and so on. In this paper we first review the current research on across-wind loads and effects of super-tall buildings and structures both at home and abroad. Then we present the results of our study. Finally, we illustrate a case study in which our research results are applied to a typical super-tall structure. 展开更多
关键词 super-tall building and structure across-wind aerodynamic force across-wind aerodynamic damping across-wind effects across-wind quivalent static wind loads case study
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部