-
题名超高速小盒包装机多工况过程故障监测与诊断方法
被引量:2
- 1
-
-
作者
王伟
赵春晖
李钰靓
楼卫东
张利宏
-
机构
浙江中烟工业有限责任公司
浙江大学控制科学与工程学院工业控制技术国家重点实验室
-
出处
《烟草科技》
EI
CAS
CSCD
北大核心
2016年第7期91-97,共7页
-
基金
国家自然科学基金资助项目"批次过程监测与故障诊断的基础理论研究"(61422306)和"间歇过程高效运行的建模控制方法及应用"(61433005)
浙江省博士后科研择优资助项目"基于多元统计分析的卷烟工厂设备在线监测和故障诊断技术研究"(BSH1502045)
-
文摘
为解决超高速小盒包装机中采用传统数据报表和人工目测等方式进行设备状态监测,无法满足高效卷烟生产等问题,通过运行特性分析,提出了一种基于工况划分和模型匹配的超高速小盒包装机故障监测与诊断方法。离线建模阶段,计算滑动时间窗口内的稳定度因子以识别稳定工况和过渡工况,采用自适应k-means聚类方法对稳定工况数据进行划分形成若干个稳定工况数据类,再利用主元分析方法对每类稳定工况数据建立统计监测模型。在线监测阶段,根据当前滑动窗口内的稳定度因子判断工况类型,若为过渡工况,则将监测统计量赋值为0;若为稳定工况,计算当前有效数据与各个聚类中心的欧式距离,获得匹配的PCA(Principal Component Analysis)监测模型进行实时监测,任一统计量超限时采用贡献图分离故障原因变量。基于设备实际运行数据进行离线验证,结果表明:该方法能够适应超高速小盒包装机的运行工况变化,及时检测出设备故障并有效分离出故障原因变量,提高了小盒包装机多工况过程的故障监测与诊断水平。
-
关键词
超高速小盒包装机
工况识别
模型匹配
主元分析
故障监测
诊断方法
-
Keywords
Ultrahigh-speed cigarette packer
Operating status identification
Model matching
Principal component analysis
Failure monitoring
Diagnosis method
-
分类号
TS434
[农业科学—烟草工业]
-