期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
图是超限制性边连通的充分条件(英文) 被引量:1
1
作者 郭利涛 郭晓峰 《数学研究》 CSCD 2010年第3期242-248,共7页
设G=(V,E)是连通图.边集S E是一个限制性边割,如果G-S是不连通的且G—S的每个分支至少有两个点.G的限制性连通度λ'(G)是G的一个最小限制性边割的基数.G是λ'-连通的,如果G存在限制性边割.G是λ'-最优的,如果λ'(G)=... 设G=(V,E)是连通图.边集S E是一个限制性边割,如果G-S是不连通的且G—S的每个分支至少有两个点.G的限制性连通度λ'(G)是G的一个最小限制性边割的基数.G是λ'-连通的,如果G存在限制性边割.G是λ'-最优的,如果λ'(G)=ζ(G),其中ζ(G)是min{d(x)+d(y)-2:xy是G的一条边}.进一步,如果每个最小的限制性边割都孤立一条边,则称G是超限制性边连通的或是超-λ'.G的逆度R(G)=∑_(v∈V) 1/d(v),其中d(v)是点v的度数.我们证明了G是λ'-连通的且不含三角形,如果R(G)≤2+1/ζ-ζ/((2δ-2)(2δ-3))+(n-2δ-ζ+2)/((n-2δ+1)(n-2δ+2)),则G是超-λ'. 展开更多
关键词 互联网络 超-λ' 逆度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部