针对量子粒子群算法在处理自变量具有有限定义域的问题时易陷入局部最优解的问题,对算法的量子模型加以改进,提出了基于非对称势的量子粒子群算法(asymmetric potential well based quantum particle swarm optimization,AQPSO)。该算...针对量子粒子群算法在处理自变量具有有限定义域的问题时易陷入局部最优解的问题,对算法的量子模型加以改进,提出了基于非对称势的量子粒子群算法(asymmetric potential well based quantum particle swarm optimization,AQPSO)。该算法认为粒子处于非对称势阱中,势阱的参数由当前的最优位置和自变量的定义域共同决定。而在求解粒子在空间分布的波函数时,又采用了参数消减方法,只需人工指定越限概率,简化算法流程。最后,通过算例验证,该方法的全局搜索能力显著提升,在处理高维、复杂、强干扰性问题时,具有显著优势。展开更多
The simplification of fatigue load spectrum,which can effectively reduce experimental cost,is of great importance for structural fatigue tests.By introducing random variables,the probabilistic tolerance method of remo...The simplification of fatigue load spectrum,which can effectively reduce experimental cost,is of great importance for structural fatigue tests.By introducing random variables,the probabilistic tolerance method of removing small amplitude cycles proposed in this paper takes into account the randomness of both load and fatigue limit.The probability of the damage occurrence caused by the removed small loads is calculated to ensure that it cannot exceed the given probabilistic tolerance.Accordingly,the omission level is obtained and the truncated spectrum is formed.The unnotched aluminum sheet specimens are used to perform the fatigue test on the original fatigue spectrum and truncated fatigue spectrum of a transporter.The test results show that there is no statistical difference between the test life of the truncated spectrum and that of the original spectrum,which demonstrates the validity of the small-load-omitting method that considers randomness.展开更多
文摘针对量子粒子群算法在处理自变量具有有限定义域的问题时易陷入局部最优解的问题,对算法的量子模型加以改进,提出了基于非对称势的量子粒子群算法(asymmetric potential well based quantum particle swarm optimization,AQPSO)。该算法认为粒子处于非对称势阱中,势阱的参数由当前的最优位置和自变量的定义域共同决定。而在求解粒子在空间分布的波函数时,又采用了参数消减方法,只需人工指定越限概率,简化算法流程。最后,通过算例验证,该方法的全局搜索能力显著提升,在处理高维、复杂、强干扰性问题时,具有显著优势。
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)National Natural Science Foundations of China(Nos.52075244,52002181)。
文摘The simplification of fatigue load spectrum,which can effectively reduce experimental cost,is of great importance for structural fatigue tests.By introducing random variables,the probabilistic tolerance method of removing small amplitude cycles proposed in this paper takes into account the randomness of both load and fatigue limit.The probability of the damage occurrence caused by the removed small loads is calculated to ensure that it cannot exceed the given probabilistic tolerance.Accordingly,the omission level is obtained and the truncated spectrum is formed.The unnotched aluminum sheet specimens are used to perform the fatigue test on the original fatigue spectrum and truncated fatigue spectrum of a transporter.The test results show that there is no statistical difference between the test life of the truncated spectrum and that of the original spectrum,which demonstrates the validity of the small-load-omitting method that considers randomness.