[Objective] Water quality variation trend of Wei River was analyzed and the water quality evaluation was performed in this study. [Method] Stationing and water sampling were conducted along Wei River at three differen...[Objective] Water quality variation trend of Wei River was analyzed and the water quality evaluation was performed in this study. [Method] Stationing and water sampling were conducted along Wei River at three different sites during the 12 months from January to December of 2014, the water samples were pre-treated and analyzed on chemical pollution indexes with the national standard, water quality data of Wei River in the 12 months was processed with periodic time series method, Spearman rank correlation coefficient was adopted to test pollution changing trend, and water quality status of Wei water was evaluated with integrated index of organic pollution. [Result] NH3-N and TN of Wei River exceeded the standard's lim- its; [ Y~ [ 〉Wp=0.506, [ Yss~ [ 〉Wp=0.506 and [ Y&=0~,, Diecqieo 〉Wp=0.506 indicated that the integrated index of organic pollution of Shawangdu section, S.huyuan section and Tongguan Diaoqiao section showed a significant downtrend, respetively; and the water quality of the three sections became better, and it was worth noting that it was necessary to strengthen the water quality control of Wei River from January to June, so as to ensure that the water quality of Wei River reached the standard all the time. [Cendasien] This research was of significance in improving water ecological environment in Weinan as well as rationally utilizing water resources and finally realizing permanent development. Key words Wei River; Water quality variation trend; Integrated index of organic pollution; Evaluation展开更多
The Mongolian Plateau,a vital ecological barrier in northern China,is of great importance for studying vegetation dynamics in Mongolia against the background of climate warming.Such studies can enhance our understandi...The Mongolian Plateau,a vital ecological barrier in northern China,is of great importance for studying vegetation dynamics in Mongolia against the background of climate warming.Such studies can enhance our understanding of regional vegetation responses to global warming and contribute to the establishment of a stronger ecological barrier in northern China.Here,we analyzed the spatial and temporal characteristics of the NDVI(normalized difference vegetation index)in Mongolia using 8 km resolution GIMMS NDVI3g data from 1990 to 2022,along with temperature,precipitation,and elevation data.Trend analysis and correlation methods were used to examine the relationships between the NDVI and temperature,as well as precipitation.The results showed four important aspects of these relationships.(1)The NDVI in Mongolia increased significantly from 1990 to 2022 at a rate of 0.0015 yr^(-1)(P<0.05).(2)Mongolia’s NDVI increased from 1990 to 2022 in 60.73%of the country.Of this total,the area with a significant increase accounted for 31.67%and was concentrated on the eastern and western edges.The area experiencing a significant decrease accounted for 15.67%and was mainly located on the southwestern edges.(3)The NDVI analysis revealed significant increasing trends in all regions except for those at elevations of 1500-2000 m.The greatest rate of increase was observed between 500 and 1000 m,and the increasing trend weakened as elevation continued to increase before gradually becoming significant again.Additionally,the NDVI increased significantly across different slopes,and the rate of increase decreased as the slope increased.(4)From 1990 to 2022,Mongolia’s NDVI was mostly negatively correlated with temperature.This occurred over 66.75%of the total land area,with 17.21%of the region exhibiting a significant negative correlation,mainly in the southwest.Conversely,the NDVI demonstrated a positive correlation with precipitation,encompassing 86.71%of the total land area.Approximately 40.44%of the region had a significant positive correlation,primarily in the southwest.In conclusion,throughout the experimental period,the vegetation state in Mongolia improved.However,due to the warming and drying climate,more attention should be paid to vegetation degradation in the south-central region.展开更多
Extreme climate events play an important role in studies of long-term climate change. As the Earth’s Third Pole, the Tibetan Plateau(TP) is sensitive to climate change and variation. In this study on the TP, the spat...Extreme climate events play an important role in studies of long-term climate change. As the Earth’s Third Pole, the Tibetan Plateau(TP) is sensitive to climate change and variation. In this study on the TP, the spatiotemporal changes in climate extreme indices(CEIs) are analyzed based on daily maximum and minimum surface air temperatures and precipitation at 98 meteorological stations, most with elevations of at least 4000 m above sea level, during 1960–2012. Fifteen temperature extreme indices(TEIs) and eight precipitation extreme indices(PEIs) were calculated. Then, their long-term change patterns, from spatial and temporal perspectives, were determined at regional, eco-regional and station levels. The entire TP region exhibits a significant warming trend, as reflected by the TEIs. The regional cold days and nights show decreasing trends at rates of-8.9 d(10 yr)-1(days per decade) and-17.3 d(10 yr)-1, respectively. The corresponding warm days and nights have increased by 7.6 d(10 yr)-1 and 12.5 d(10 yr)-1, respectively. At the station level, the majority of stations indicate statistically significant trends for all TEIs, but they show spatial heterogeneity. The eco-regional TEIs show patterns that are consistent with the entire TP. The growing season has become longer at a rate of 5.3 d(10 yr)^-1. The abrupt change points for CEIs were examined, and they were mainly distributed during the 1980 s and 1990 s. The PEIs on the TP exhibit clear fluctuations and increasing trends with small magnitudes. The annual total precipitation has increased by 2.8 mm(10 yr)^-1(not statistically significant). Most of the CEIs will maintain a persistent trend, as indicated by their Hurst exponents. The developing trends of the CEIs do not show a corresponding change with increasing altitude. In general, the warming trends demonstrate an asymmetric pattern reflected by the rapid increase in the warming trends of the cold TEIs, which are of greater magnitudes than those of the warm TEIs. This finding indicates a positive shift in the distribution of the daily minimum temperatures throughout the TP. Most of the PEIs show weak increasing trends, which are not statistically significant. This work aims to delineate a comprehensive picture of the extreme climate conditions over the TP that can enhance our understanding of its changing climate.展开更多
基金Supported by Natural Science Foundation of China(41171061)Technological Innovation Support Fund of Weinan city(2012KYJ-3)Characteristic Discipline Construction Project of Weinan Normal University(14TSXK04,14TSXK05)~~
文摘[Objective] Water quality variation trend of Wei River was analyzed and the water quality evaluation was performed in this study. [Method] Stationing and water sampling were conducted along Wei River at three different sites during the 12 months from January to December of 2014, the water samples were pre-treated and analyzed on chemical pollution indexes with the national standard, water quality data of Wei River in the 12 months was processed with periodic time series method, Spearman rank correlation coefficient was adopted to test pollution changing trend, and water quality status of Wei water was evaluated with integrated index of organic pollution. [Result] NH3-N and TN of Wei River exceeded the standard's lim- its; [ Y~ [ 〉Wp=0.506, [ Yss~ [ 〉Wp=0.506 and [ Y&=0~,, Diecqieo 〉Wp=0.506 indicated that the integrated index of organic pollution of Shawangdu section, S.huyuan section and Tongguan Diaoqiao section showed a significant downtrend, respetively; and the water quality of the three sections became better, and it was worth noting that it was necessary to strengthen the water quality control of Wei River from January to June, so as to ensure that the water quality of Wei River reached the standard all the time. [Cendasien] This research was of significance in improving water ecological environment in Weinan as well as rationally utilizing water resources and finally realizing permanent development. Key words Wei River; Water quality variation trend; Integrated index of organic pollution; Evaluation
基金The National Key R&D Program of China(2022YFE0119200)The National Natural Science Foundation of China(41977059,41501571)。
文摘The Mongolian Plateau,a vital ecological barrier in northern China,is of great importance for studying vegetation dynamics in Mongolia against the background of climate warming.Such studies can enhance our understanding of regional vegetation responses to global warming and contribute to the establishment of a stronger ecological barrier in northern China.Here,we analyzed the spatial and temporal characteristics of the NDVI(normalized difference vegetation index)in Mongolia using 8 km resolution GIMMS NDVI3g data from 1990 to 2022,along with temperature,precipitation,and elevation data.Trend analysis and correlation methods were used to examine the relationships between the NDVI and temperature,as well as precipitation.The results showed four important aspects of these relationships.(1)The NDVI in Mongolia increased significantly from 1990 to 2022 at a rate of 0.0015 yr^(-1)(P<0.05).(2)Mongolia’s NDVI increased from 1990 to 2022 in 60.73%of the country.Of this total,the area with a significant increase accounted for 31.67%and was concentrated on the eastern and western edges.The area experiencing a significant decrease accounted for 15.67%and was mainly located on the southwestern edges.(3)The NDVI analysis revealed significant increasing trends in all regions except for those at elevations of 1500-2000 m.The greatest rate of increase was observed between 500 and 1000 m,and the increasing trend weakened as elevation continued to increase before gradually becoming significant again.Additionally,the NDVI increased significantly across different slopes,and the rate of increase decreased as the slope increased.(4)From 1990 to 2022,Mongolia’s NDVI was mostly negatively correlated with temperature.This occurred over 66.75%of the total land area,with 17.21%of the region exhibiting a significant negative correlation,mainly in the southwest.Conversely,the NDVI demonstrated a positive correlation with precipitation,encompassing 86.71%of the total land area.Approximately 40.44%of the region had a significant positive correlation,primarily in the southwest.In conclusion,throughout the experimental period,the vegetation state in Mongolia improved.However,due to the warming and drying climate,more attention should be paid to vegetation degradation in the south-central region.
基金National Natural Science Foundation of China(41601478,41571391)National Key Research and Development Program of China(2018YFB0505301,2016YFC0500103)
文摘Extreme climate events play an important role in studies of long-term climate change. As the Earth’s Third Pole, the Tibetan Plateau(TP) is sensitive to climate change and variation. In this study on the TP, the spatiotemporal changes in climate extreme indices(CEIs) are analyzed based on daily maximum and minimum surface air temperatures and precipitation at 98 meteorological stations, most with elevations of at least 4000 m above sea level, during 1960–2012. Fifteen temperature extreme indices(TEIs) and eight precipitation extreme indices(PEIs) were calculated. Then, their long-term change patterns, from spatial and temporal perspectives, were determined at regional, eco-regional and station levels. The entire TP region exhibits a significant warming trend, as reflected by the TEIs. The regional cold days and nights show decreasing trends at rates of-8.9 d(10 yr)-1(days per decade) and-17.3 d(10 yr)-1, respectively. The corresponding warm days and nights have increased by 7.6 d(10 yr)-1 and 12.5 d(10 yr)-1, respectively. At the station level, the majority of stations indicate statistically significant trends for all TEIs, but they show spatial heterogeneity. The eco-regional TEIs show patterns that are consistent with the entire TP. The growing season has become longer at a rate of 5.3 d(10 yr)^-1. The abrupt change points for CEIs were examined, and they were mainly distributed during the 1980 s and 1990 s. The PEIs on the TP exhibit clear fluctuations and increasing trends with small magnitudes. The annual total precipitation has increased by 2.8 mm(10 yr)^-1(not statistically significant). Most of the CEIs will maintain a persistent trend, as indicated by their Hurst exponents. The developing trends of the CEIs do not show a corresponding change with increasing altitude. In general, the warming trends demonstrate an asymmetric pattern reflected by the rapid increase in the warming trends of the cold TEIs, which are of greater magnitudes than those of the warm TEIs. This finding indicates a positive shift in the distribution of the daily minimum temperatures throughout the TP. Most of the PEIs show weak increasing trends, which are not statistically significant. This work aims to delineate a comprehensive picture of the extreme climate conditions over the TP that can enhance our understanding of its changing climate.