Chengdu City is in the period of rapid urbanization and industrialization, and the disturbance derived from human activities on environment is increasing remarkablely in recent 20 years. The pressure on environment, e...Chengdu City is in the period of rapid urbanization and industrialization, and the disturbance derived from human activities on environment is increasing remarkablely in recent 20 years. The pressure on environment, economy and population is also increasing and land use in Chengdu has changed enormously. As struc- ture and function of land ecological system change obviously, sustainable development of land productivity has been an important goal and strategic task from now on, and it is necessary to systematically research land ecological carrying capacity based on ecological footprint. The ecological footprint of Chengdu City in the past ten years was calculated and analyzed from the spatial and temporal aspects according to statistical data from 1998 to 2008, as per ecological footprint method, ecological carrying capacity and the GIS spatial analysis method, and regression analysis method. The ecological footprint and ecological carrying capacity values from 2009 to 2019 in Chengdu City were predicted through calculation results in the past ten years. The results show that the ecological footprint and ecological deficit of land use from 1998 to 2008 increased in Chengdu City. The ecological deficit of land use within the city center was in high levels in the past ten years, and the ecological footprint kept raising, especially in areas, such as Shuangliu, Chongzhou, Qingyang among 9 city areas, 4 counties and 6 districts in Chengdu City. There is fanlike distribution of ecological deficit of land use. Analysis shows that the social and natural ecological system is uneven distribution, which is not in sustainable de- velopment situation. The results of the study show that the economic, social and natural ecological system in Chengdu City is not sustainable, and the ecological foot- print is uneven distribution. The analysis of the dynamic change of land ecological carrying capacity in Chengdu City is very important for city government in the pro- cess of the vigorous development in new Tianfu Xinqu, and redevelopment in the northern part of this city.展开更多
This paper presents the detailed results and analyses on the ecological footprints and bio-capacities of the individual cities and the province as a whole for the year 2001, providing a clear picture of sustainability...This paper presents the detailed results and analyses on the ecological footprints and bio-capacities of the individual cities and the province as a whole for the year 2001, providing a clear picture of sustainability for the province. Results show that the ecological footprints of most cities in Liaoning exceeded their respective bio-capacities, incurring high ecological deficits. The ecological deficit of the province as a whole was 1.31 ha/cap. Those cities with resources extraction and/or primary material-making as their major industries constitute the "ecologically black band", whose ecological deficits ranged from 2.45 to 5.23 ha/cap, the highest of all cities in the province. Fossil energy consumption was the major source of footprint amounting to 1.63 ha/cap at the provincial level, taking up 67.3% of the total. For cropland, modest ecological surpluses occurred in Jinzhou, Tieling, Huludao, and Panjin while modest ecological deficits in Dalian, Benxi, Fushun, and Dandong, resulting in an overall surplus for the province. Liaoning had a certain level of surplus in fishing ground (water area), mainly distributed in the coastal cities of Dalian, Panjin, Huludao, Yingkou, Jinzhou, and Dandong. Most cities had a small ecological deficit in pasture and all had a small ecological surplus in forest. The eco-efficiency, expressed as GDP value per hectare of footprint, exhibits high variations among the cities, with the highest (Shenyang) more than 10 times the lowest (Fuxin). Cities with manufacture, high-tech, and better developed service industries had high eco-efficiency, while those with resources extraction, primary material-making, and less developed service industries had low eco-efficiency. Based on the components and geographical distribution of ecological footprint, strategic policy implications are outlined for Liaoning’s development toward a sustainable future.展开更多
Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanid...Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanide in a 350 kA cell operated for 2396 days was analyzed and the footprint and corrosion mechanism of the harmful substances in SPL were also studied. It is found that the fluorides are mainly concentrated in the cathode carbon block and the layer of dry barrier under the cathodes, which is closely related to permeability of the cathodes and dry barrier the fluorides penetrate in. Cyanide has a low concentration in the cell center and a high concentration in the sidewall, which is positively related to the air amount entering into the areas in the cells.展开更多
This paper researches the ecological sustainability of Zhangjiakou City, Hebei Province, China, using the ecological footprint model. According to the study we find that Zhangjiakou City was in the situation of ecolog...This paper researches the ecological sustainability of Zhangjiakou City, Hebei Province, China, using the ecological footprint model. According to the study we find that Zhangjiakou City was in the situation of ecological deficit from 1990 to 2000 and the deficit had the enlarging tendency. In 1990 the per capita ecological footprint was 0.964 and the per capita ecological capacity was 0.5 l 8, thus it can be calculated that the per capita ecological deficit was 4).446. However in 2000, the per capita ecological footprint increased to 1.068, at the same time the per capita eco- logical capacity decreased to 0.471, then the per capita ecological deficit in 2000 was 4).597. Furthermore, this paper studies the ecological sustainability of the city from the changes of the ecological footprint of per 10,000 yuan GDP and the productivity of ecological system. Finally the authors point out the shortage of the model and the way to improve it.展开更多
文摘为量化和评价粘胶短纤维生产废水排放造成的水环境影响,分别基于灰水足迹和水劣化足迹理论核算与评价了粘胶短纤维生产过程的水环境负荷。结果表明:制浆阶段的黑液废水和纺练阶段的精练废水的灰水足迹较大,分别为3 375.35m^3/t和4 331.84m^3/t,特征污染物分别为COD和Zn离子;制浆阶段黑液废水的水体富营养化足迹最大,为9.05 kg PO4^3-eq/t,约占生产工序水体富营养化足迹的75%;纺练阶段精练废水的水体生态毒性足迹最大,为3.38×10^6 m^3 H2O eq/t,约占生产工序水体生态毒性足迹的73%;水酸化足迹主要集中于二浴废水和精练废水,分别为34.01 kg SO2 eq/t和46.86 kg SO2 eq/t。
基金Supported by National High-tech R&D Program of China(863Program)(2009AA12Z-140)National Natural Science Foundation of China(40771144,40575035)Scientific Research Foundation of Sichuan Normal University(SXK11002)~~
文摘Chengdu City is in the period of rapid urbanization and industrialization, and the disturbance derived from human activities on environment is increasing remarkablely in recent 20 years. The pressure on environment, economy and population is also increasing and land use in Chengdu has changed enormously. As struc- ture and function of land ecological system change obviously, sustainable development of land productivity has been an important goal and strategic task from now on, and it is necessary to systematically research land ecological carrying capacity based on ecological footprint. The ecological footprint of Chengdu City in the past ten years was calculated and analyzed from the spatial and temporal aspects according to statistical data from 1998 to 2008, as per ecological footprint method, ecological carrying capacity and the GIS spatial analysis method, and regression analysis method. The ecological footprint and ecological carrying capacity values from 2009 to 2019 in Chengdu City were predicted through calculation results in the past ten years. The results show that the ecological footprint and ecological deficit of land use from 1998 to 2008 increased in Chengdu City. The ecological deficit of land use within the city center was in high levels in the past ten years, and the ecological footprint kept raising, especially in areas, such as Shuangliu, Chongzhou, Qingyang among 9 city areas, 4 counties and 6 districts in Chengdu City. There is fanlike distribution of ecological deficit of land use. Analysis shows that the social and natural ecological system is uneven distribution, which is not in sustainable de- velopment situation. The results of the study show that the economic, social and natural ecological system in Chengdu City is not sustainable, and the ecological foot- print is uneven distribution. The analysis of the dynamic change of land ecological carrying capacity in Chengdu City is very important for city government in the pro- cess of the vigorous development in new Tianfu Xinqu, and redevelopment in the northern part of this city.
基金Excellence midlife and youth teacher foundation of Ministry of Education No.1711
文摘This paper presents the detailed results and analyses on the ecological footprints and bio-capacities of the individual cities and the province as a whole for the year 2001, providing a clear picture of sustainability for the province. Results show that the ecological footprints of most cities in Liaoning exceeded their respective bio-capacities, incurring high ecological deficits. The ecological deficit of the province as a whole was 1.31 ha/cap. Those cities with resources extraction and/or primary material-making as their major industries constitute the "ecologically black band", whose ecological deficits ranged from 2.45 to 5.23 ha/cap, the highest of all cities in the province. Fossil energy consumption was the major source of footprint amounting to 1.63 ha/cap at the provincial level, taking up 67.3% of the total. For cropland, modest ecological surpluses occurred in Jinzhou, Tieling, Huludao, and Panjin while modest ecological deficits in Dalian, Benxi, Fushun, and Dandong, resulting in an overall surplus for the province. Liaoning had a certain level of surplus in fishing ground (water area), mainly distributed in the coastal cities of Dalian, Panjin, Huludao, Yingkou, Jinzhou, and Dandong. Most cities had a small ecological deficit in pasture and all had a small ecological surplus in forest. The eco-efficiency, expressed as GDP value per hectare of footprint, exhibits high variations among the cities, with the highest (Shenyang) more than 10 times the lowest (Fuxin). Cities with manufacture, high-tech, and better developed service industries had high eco-efficiency, while those with resources extraction, primary material-making, and less developed service industries had low eco-efficiency. Based on the components and geographical distribution of ecological footprint, strategic policy implications are outlined for Liaoning’s development toward a sustainable future.
基金Project(2019YFC1908400)supported by the National Key Research and Development Program of ChinaProject(2018BDE02050)supported by the Key Research and Development Program of Ningxia Hui Autonomous Region,China+1 种基金Project(2302018FRF-TP-18-095A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2018-XY-14)supported by the Special Funds for Scientific and Technological Consultation of Academicians,China。
文摘Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanide in a 350 kA cell operated for 2396 days was analyzed and the footprint and corrosion mechanism of the harmful substances in SPL were also studied. It is found that the fluorides are mainly concentrated in the cathode carbon block and the layer of dry barrier under the cathodes, which is closely related to permeability of the cathodes and dry barrier the fluorides penetrate in. Cyanide has a low concentration in the cell center and a high concentration in the sidewall, which is positively related to the air amount entering into the areas in the cells.
基金Under the auspices of the National Natural Science Foundation of China (No. 40171001)
文摘This paper researches the ecological sustainability of Zhangjiakou City, Hebei Province, China, using the ecological footprint model. According to the study we find that Zhangjiakou City was in the situation of ecological deficit from 1990 to 2000 and the deficit had the enlarging tendency. In 1990 the per capita ecological footprint was 0.964 and the per capita ecological capacity was 0.5 l 8, thus it can be calculated that the per capita ecological deficit was 4).446. However in 2000, the per capita ecological footprint increased to 1.068, at the same time the per capita eco- logical capacity decreased to 0.471, then the per capita ecological deficit in 2000 was 4).597. Furthermore, this paper studies the ecological sustainability of the city from the changes of the ecological footprint of per 10,000 yuan GDP and the productivity of ecological system. Finally the authors point out the shortage of the model and the way to improve it.
文摘为量化和评价黏胶纤维生产对水资源环境造成的影响,基于水足迹理论核算了黏胶纤维企业的基准水足迹。结果表明:现有企业生产黏胶长丝和黏胶短纤维的基准水短缺足迹分别为110.75 m^3 H2O eq/t和28.80 m^3 H2O eq/t;现有黏胶纤维企业的基准水体富营养化足迹主要由COD和BOD5造成,分别为1.155 kg PO43-eq/t和1.444 kg PO4^3-eq/t;现有企业基准水体生态毒性足迹主要由锌造成,为2.66×10^5m^3 H2O eq/t;现有企业基准水酸化足迹主要由硫化物造成,为0.0015 kg SO2eq/t;而新建企业生产黏胶短纤维造成的3类基准水劣化足迹均约为现有企业的80%。