The rovibrational state-selectivity in photoassociation (PA) is investigated for the ground electronic state of OH radical. The calculated results show that population can be transferred from continuum state to the ...The rovibrational state-selectivity in photoassociation (PA) is investigated for the ground electronic state of OH radical. The calculated results show that population can be transferred from continuum state to the target states through three-, four-, and nine-photon transitions by choosing suitable pulse parameters and initial collision energy. To control population transfer to a lower rovibrational state, a shorter pulse frequency has to be chosen and the photon number transferred to target state should be increased. In PA process, some associated OH radicals can be dissociated via intermediate and background states, which decreases the nal population of the target state.展开更多
Low lying excited states of beryllium are calculated with multiconfiguration interaction method. The relativisitic corrections and mass polarization are included. The oscillator strength and radiation rates are also ...Low lying excited states of beryllium are calculated with multiconfiguration interaction method. The relativisitic corrections and mass polarization are included. The oscillator strength and radiation rates are also calculated. Our results are in good agreement with other theoretical data.展开更多
A novel control strategy for a continuous stirred tank reactor(CSTR)system,which has the typical characteristic of strongly pronounced nonlinearity,multiple operating points,and a wide operating range,is initiated fro...A novel control strategy for a continuous stirred tank reactor(CSTR)system,which has the typical characteristic of strongly pronounced nonlinearity,multiple operating points,and a wide operating range,is initiated from the point of hybrid systems.The proposed scheme makes full use of the modeling power of mixed logical dy- namical(MLD)systems to describe the highly nonlinear dynamics and multiple operating points in a unified framework as a hybrid system,and takes advantage of the good control quality of model predictive control(MPC) to design a controller.Thus,this approach avoids oscillation during switching between sub-systems,helps to relieve shaking in transition,and augments the stability robustness of the whole system,and finally achieves optimal(i.e. fast and smooth)transition between operating points.The simulation results demonstrate that the presented ap- proach has a satisfactory performance.展开更多
We have precisely derived a "rigorous instantaneous formulation" for transitions between two bound states when the bound states are well-described by instantaneous Bethe-Salpeter (BS) equation (i.e. the kernel of...We have precisely derived a "rigorous instantaneous formulation" for transitions between two bound states when the bound states are well-described by instantaneous Bethe-Salpeter (BS) equation (i.e. the kernel of the equation is instantaneous "occasionally"). The obtained rigorous instantaneous formulation, in fact, is expressed as an operator sandwiched by two "reduced BS wave functions" properly, while the reduced BS wave functions appearing in the formulation are the rigorous solutions of the instantaneous BS equation, and they may relate to Schroedinger wave functions straightforwardly. We also show that the rigorous instantaneous formulation is gauge-invariant with respect to the Uem(1) transformation precisely, if the concerned transitions are radiative. Some applications of the formulation are outlined.展开更多
In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular mom...In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular momenta transitions as a function of the confined strength are investigated. We find that the confinement may cause accidental degeneracies between levels with different low-lying states and the inversion of the energy values. The present results are useful to understand the optical properties and internal electron-electron correlations of quantum dot materials.展开更多
A two-body equation of the kaon-proton system with the lowest order relativistic corrections is derived and solved. The scattering lengths and the energy of an unstable bound state are calculated.
In order to clarify the mechanism of optical transitions for cubic SrHfO_3, we have investigated the electronicstructure and optical properties of cubic SrHfO_3 using the plane-wave ultrasoft pseudopotential technique...In order to clarify the mechanism of optical transitions for cubic SrHfO_3, we have investigated the electronicstructure and optical properties of cubic SrHfO_3 using the plane-wave ultrasoft pseudopotential technique based on thefirst-principles density-functional theory (DFT).The ground-state properties, obtained by minimizing the total energy,are in favorable agreement with the previous work.From the band structure and charge densities as well as the theoryof crystal-field and molecular-orbital bonding, we have systematically studied how the optical transitions are affected bythe electronic structure and molecular orbitals.Our calculated complex dielectric function is in good agreement withthe experimental data and the optical transitions are in accord with the electronic structure.展开更多
基金This work is supported by the National Natural Science Foundation of China (No.11347012).
文摘The rovibrational state-selectivity in photoassociation (PA) is investigated for the ground electronic state of OH radical. The calculated results show that population can be transferred from continuum state to the target states through three-, four-, and nine-photon transitions by choosing suitable pulse parameters and initial collision energy. To control population transfer to a lower rovibrational state, a shorter pulse frequency has to be chosen and the photon number transferred to target state should be increased. In PA process, some associated OH radicals can be dissociated via intermediate and background states, which decreases the nal population of the target state.
文摘Low lying excited states of beryllium are calculated with multiconfiguration interaction method. The relativisitic corrections and mass polarization are included. The oscillator strength and radiation rates are also calculated. Our results are in good agreement with other theoretical data.
基金supported by the National Basic Research Program of China under Grant(2006CB921203)the National Natural Science Foundation of China under Grant(10827404 and 10804124)Funds from Chinese Academy of Sciences
基金Supported by the National Natural Science Foundation of China (No.60404018) and the State Key Development Program for Basic Research of China (No.2002CB312200).
文摘A novel control strategy for a continuous stirred tank reactor(CSTR)system,which has the typical characteristic of strongly pronounced nonlinearity,multiple operating points,and a wide operating range,is initiated from the point of hybrid systems.The proposed scheme makes full use of the modeling power of mixed logical dy- namical(MLD)systems to describe the highly nonlinear dynamics and multiple operating points in a unified framework as a hybrid system,and takes advantage of the good control quality of model predictive control(MPC) to design a controller.Thus,this approach avoids oscillation during switching between sub-systems,helps to relieve shaking in transition,and augments the stability robustness of the whole system,and finally achieves optimal(i.e. fast and smooth)transition between operating points.The simulation results demonstrate that the presented ap- proach has a satisfactory performance.
基金The project supported in part by National Natural Science Foundation of China
文摘We have precisely derived a "rigorous instantaneous formulation" for transitions between two bound states when the bound states are well-described by instantaneous Bethe-Salpeter (BS) equation (i.e. the kernel of the equation is instantaneous "occasionally"). The obtained rigorous instantaneous formulation, in fact, is expressed as an operator sandwiched by two "reduced BS wave functions" properly, while the reduced BS wave functions appearing in the formulation are the rigorous solutions of the instantaneous BS equation, and they may relate to Schroedinger wave functions straightforwardly. We also show that the rigorous instantaneous formulation is gauge-invariant with respect to the Uem(1) transformation precisely, if the concerned transitions are radiative. Some applications of the formulation are outlined.
基金supported by National Natural Science Foundation of China under Grant No.10775035
文摘In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular momenta transitions as a function of the confined strength are investigated. We find that the confinement may cause accidental degeneracies between levels with different low-lying states and the inversion of the energy values. The present results are useful to understand the optical properties and internal electron-electron correlations of quantum dot materials.
基金the National Natural Science Foundation of China under,the High Performance Computing Center of China (Beijing) and partly undertaken on IBM RS/6000 SP at CCSE of Peking University,北京大学校科研和校改项目
文摘A two-body equation of the kaon-proton system with the lowest order relativistic corrections is derived and solved. The scattering lengths and the energy of an unstable bound state are calculated.
基金Supported by the National Natural Science Foundation of China under Grant No.50902110the National Aerospace Science Foundation of China under Grant No.2008ZF53058+3 种基金 the Specialized Research Foundation for Doctoral Program of Higher Education of China under Grant No.200806991032 the Doctorate Foundation of Northwestern Polytechnical University under Grant No.cx201005 the Northwestern Polytechnical University (NPU) Foundation for Fundamental Research under Grant No.NPU-FFR-W018108the 111 Project under Grant No.B08040
文摘In order to clarify the mechanism of optical transitions for cubic SrHfO_3, we have investigated the electronicstructure and optical properties of cubic SrHfO_3 using the plane-wave ultrasoft pseudopotential technique based on thefirst-principles density-functional theory (DFT).The ground-state properties, obtained by minimizing the total energy,are in favorable agreement with the previous work.From the band structure and charge densities as well as the theoryof crystal-field and molecular-orbital bonding, we have systematically studied how the optical transitions are affected bythe electronic structure and molecular orbitals.Our calculated complex dielectric function is in good agreement withthe experimental data and the optical transitions are in accord with the electronic structure.