It is known that a distance-regular graph with valency k at least three admits at most two Qpolynomial structures. We show that all distance-regular graphs with diameter four and valency at least three admitting two Q...It is known that a distance-regular graph with valency k at least three admits at most two Qpolynomial structures. We show that all distance-regular graphs with diameter four and valency at least three admitting two Q-polynomial structures are either dual bipartite or almost dual bipartite. By the work of Dickie(1995) this implies that any distance-regular graph with diameter d at least four and valency at least three admitting two Q-polynomial structures is, provided it is not a Hadamard graph, either the cube H(d, 2)with d even, the half cube 1/2H(2d + 1, 2), the folded cube?H(2d + 1, 2), or the dual polar graph on [2A2d-1(q)]with q 2 a prime power.展开更多
Let D be an integer at least 3 and let H(D, 2) denote the hypercube. It is known that H(D, 2) is a Q-polynomial distance-regular graph with diameter D, and its eigenvalue sequence and its dual eigenvalue sequence are ...Let D be an integer at least 3 and let H(D, 2) denote the hypercube. It is known that H(D, 2) is a Q-polynomial distance-regular graph with diameter D, and its eigenvalue sequence and its dual eigenvalue sequence are all {D-2i}D i=0. Suppose that denotes the tetrahedron algebra. In this paper, the authors display an action of ■ on the standard module V of H(D, 2). To describe this action, the authors define six matrices in Mat X(C), called A, A*, B, B*, K, K*.Moreover, for each matrix above, the authors compute the transpose and then compute the transpose of each generator of ■ on V.展开更多
基金supported by Natural Science Foundation of Hebei Province(Grant No.A2012205079)Science Foundation of Hebei Normal University(Grant No.L2011B02)the 100 Talents Program of the Chinese Academy of Sciences for support
文摘It is known that a distance-regular graph with valency k at least three admits at most two Qpolynomial structures. We show that all distance-regular graphs with diameter four and valency at least three admitting two Q-polynomial structures are either dual bipartite or almost dual bipartite. By the work of Dickie(1995) this implies that any distance-regular graph with diameter d at least four and valency at least three admitting two Q-polynomial structures is, provided it is not a Hadamard graph, either the cube H(d, 2)with d even, the half cube 1/2H(2d + 1, 2), the folded cube?H(2d + 1, 2), or the dual polar graph on [2A2d-1(q)]with q 2 a prime power.
基金supported by the National Natural Science Foundation of China(Nos.11471097,11271257)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20121303110005)+1 种基金the Natural Science Foundation of Hebei Province(No.A2013205021)the Key Fund Project of Hebei Normal University(No.L2012Z01)
文摘Let D be an integer at least 3 and let H(D, 2) denote the hypercube. It is known that H(D, 2) is a Q-polynomial distance-regular graph with diameter D, and its eigenvalue sequence and its dual eigenvalue sequence are all {D-2i}D i=0. Suppose that denotes the tetrahedron algebra. In this paper, the authors display an action of ■ on the standard module V of H(D, 2). To describe this action, the authors define six matrices in Mat X(C), called A, A*, B, B*, K, K*.Moreover, for each matrix above, the authors compute the transpose and then compute the transpose of each generator of ■ on V.