期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于距离比值尺度的模糊粗糙集属性约简 被引量:6
1
作者 陈毅宁 陈红梅 《计算机科学》 CSCD 北大核心 2020年第3期67-72,共6页
属性约简能有效地去除不必要属性,提高分类器的性能。模糊粗糙集是处理不确定信息的重要范式,能有效地应用于属性约简。在模糊粗糙集中,样本分布的不确定性会影响对象的近似集,进而影响有效属性约简的获取。为有效地定义近似集,文中提... 属性约简能有效地去除不必要属性,提高分类器的性能。模糊粗糙集是处理不确定信息的重要范式,能有效地应用于属性约简。在模糊粗糙集中,样本分布的不确定性会影响对象的近似集,进而影响有效属性约简的获取。为有效地定义近似集,文中提出了基于距离比值尺度的模糊粗糙集,该模型引入了基于距离比值尺度的样本集的定义,通过对距离比值尺度的控制,避免了样本分布不确定性对近似集的影响;给出了该模型的基本性质,定义了新的依赖度函数,进而设计了属性约简算法;以SVM,NaiveBayes和J48作为测试分类器,在UCI数据集上评测所提算法的性能。实验结果表明,所提出的属性约简算法能够有效获取约简并提高分类的精度。 展开更多
关键词 属性约简 模糊粗糙集 距离比值尺度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部