期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于K-means的最佳聚类数的求解问题研究
1
作者
付淇
《南昌高专学报》
2011年第2期158-159,共2页
针对经典k-means聚类算法的弊端进行一定程度上的改进,提出一种新的基于距离相等函数决定最佳聚类值的改进方法。实验采用两大类标准数据集来测试该算法,并和k-means算法的结果进行了比较,证实了该改进算法的有效性,解决了聚类数目k值...
针对经典k-means聚类算法的弊端进行一定程度上的改进,提出一种新的基于距离相等函数决定最佳聚类值的改进方法。实验采用两大类标准数据集来测试该算法,并和k-means算法的结果进行了比较,证实了该改进算法的有效性,解决了聚类数目k值的难确定性问题。
展开更多
关键词
数据挖掘
聚类分析
K-MEANS
距离相等函数
下载PDF
职称材料
题名
基于K-means的最佳聚类数的求解问题研究
1
作者
付淇
机构
江西科技师范学院
出处
《南昌高专学报》
2011年第2期158-159,共2页
文摘
针对经典k-means聚类算法的弊端进行一定程度上的改进,提出一种新的基于距离相等函数决定最佳聚类值的改进方法。实验采用两大类标准数据集来测试该算法,并和k-means算法的结果进行了比较,证实了该改进算法的有效性,解决了聚类数目k值的难确定性问题。
关键词
数据挖掘
聚类分析
K-MEANS
距离相等函数
Keywords
Data Mining
Clustering Analysis
K-means
distance equal function
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于K-means的最佳聚类数的求解问题研究
付淇
《南昌高专学报》
2011
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部