期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法 被引量:6
1
作者 曹鹏宇 杨承志 +1 位作者 石礼盟 吴宏超 《系统工程与电子技术》 EI CSCD 北大核心 2022年第4期1158-1165,共8页
针对雷达实际侦察过程中会侦收到大量样本库中所没有的未知雷达信号,设计了一种基于粒子群优化的具有噪声的密度聚类算法和半监督条件生成对抗网络的单脉冲未知雷达信号处理方法。通过粒子群优化算法得到具有噪声的密度聚类算法的最优... 针对雷达实际侦察过程中会侦收到大量样本库中所没有的未知雷达信号,设计了一种基于粒子群优化的具有噪声的密度聚类算法和半监督条件生成对抗网络的单脉冲未知雷达信号处理方法。通过粒子群优化算法得到具有噪声的密度聚类算法的最优输入参数后,对未知雷达信号进行聚类,在聚类算法输出的簇中采用距离筛选算法筛选出更为可信的样本将其扩展到雷达样本库中。当加入的未知雷达信号的种类过多时,需对特征提取网络进行扩展训练,而样本库中数据量较小,难以支持特征提取网络进行有效扩展训练。因此,借鉴了半监督条件生成对抗网络实现小样本情况下未知信号的训练和分类识别。仿真结果表明,本方法的未知雷达信号识别效果表现良好。 展开更多
关键词 未知雷达信号识别 粒子群优化 具有噪声的密度聚类算法 距离筛选算法 半监督条件生成对抗网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部