湍流风速的频率会影响风力机最大功率点跟踪(maximum power point tracking,MPPT)的性能,却被目前的MPPT控制及其改进方法所忽略。因此,为进一步提高风能捕获效率,该文基于收缩跟踪区间的功率曲线调整方式,采用响应面近似模型构建最佳...湍流风速的频率会影响风力机最大功率点跟踪(maximum power point tracking,MPPT)的性能,却被目前的MPPT控制及其改进方法所忽略。因此,为进一步提高风能捕获效率,该文基于收缩跟踪区间的功率曲线调整方式,采用响应面近似模型构建最佳起始转速与3种风速特征指标(平均风速、湍流强度、湍流频率)的函数关系,进而提出能够更加全面响应湍流风况变化的改进功率信号反馈法。该方法对湍流风速的考虑更为完善,因而能进一步提高风能捕获效率以及风力机MPPT对湍流风况的适应性。最后,利用美国国家可再生能源实验室(national renewable energy laboratory,NREL)开发的FAST(fatigue,aerodynamics,structures,and turbulence)软件,针对NREL CART3风力机进行了仿真比较分析,验证了该方法的有效性与先进性。展开更多
文摘湍流风速的频率会影响风力机最大功率点跟踪(maximum power point tracking,MPPT)的性能,却被目前的MPPT控制及其改进方法所忽略。因此,为进一步提高风能捕获效率,该文基于收缩跟踪区间的功率曲线调整方式,采用响应面近似模型构建最佳起始转速与3种风速特征指标(平均风速、湍流强度、湍流频率)的函数关系,进而提出能够更加全面响应湍流风况变化的改进功率信号反馈法。该方法对湍流风速的考虑更为完善,因而能进一步提高风能捕获效率以及风力机MPPT对湍流风况的适应性。最后,利用美国国家可再生能源实验室(national renewable energy laboratory,NREL)开发的FAST(fatigue,aerodynamics,structures,and turbulence)软件,针对NREL CART3风力机进行了仿真比较分析,验证了该方法的有效性与先进性。