A novel approach, which can handle ambiguous data from weak targets, is proposed within the randomized Hough transform track-before-detect(RHT-TBD) framework. The main idea is that, without the pre-detection and ambig...A novel approach, which can handle ambiguous data from weak targets, is proposed within the randomized Hough transform track-before-detect(RHT-TBD) framework. The main idea is that, without the pre-detection and ambiguity resolution step at each time step, the ambiguous measurements are mapped by the multiple hypothesis ranging(MHR) procedure. In this way, all the information, based on the relativity in time and pulse repetition frequency(PRF) domains, can be gathered among different PRFs and integrated over time via a batch procedure. The final step is to perform the RHT with all the extended measurements, and the ambiguous data is unfolded while the detection decision is confirmed at the end of the processing chain.Unlike classic methods, the new approach resolves the problem of range ambiguity and detects the true track for targets. Finally, its application is illustrated to analyze and compare the performance between the proposed approach and the existing approach. Simulation results exhibit the effectiveness of this approach.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 61179018, 61372027, 61501489)Special Foundation for Mountain Tai Scholars
文摘A novel approach, which can handle ambiguous data from weak targets, is proposed within the randomized Hough transform track-before-detect(RHT-TBD) framework. The main idea is that, without the pre-detection and ambiguity resolution step at each time step, the ambiguous measurements are mapped by the multiple hypothesis ranging(MHR) procedure. In this way, all the information, based on the relativity in time and pulse repetition frequency(PRF) domains, can be gathered among different PRFs and integrated over time via a batch procedure. The final step is to perform the RHT with all the extended measurements, and the ambiguous data is unfolded while the detection decision is confirmed at the end of the processing chain.Unlike classic methods, the new approach resolves the problem of range ambiguity and detects the true track for targets. Finally, its application is illustrated to analyze and compare the performance between the proposed approach and the existing approach. Simulation results exhibit the effectiveness of this approach.