本文针对在行人跟踪过程中遇到的背景相似物干扰、行人之间的相互遮挡和背景杂乱等导致跟踪状态不稳定的问题,基于DIMP(learning discriminative model prediction for tracking)跟踪算法,提出了一种跟踪状态自适应的判别式单目标行人...本文针对在行人跟踪过程中遇到的背景相似物干扰、行人之间的相互遮挡和背景杂乱等导致跟踪状态不稳定的问题,基于DIMP(learning discriminative model prediction for tracking)跟踪算法,提出了一种跟踪状态自适应的判别式单目标行人跟踪算法。跟踪过程中由分类滤波器和搜索区域进行卷积操作得到响应图,通过响应图判断跟踪状态,跟踪状态分为弱响应状态、多峰强响应状态、单峰强响应状态。针对多峰强响应状态下的干扰物影响,提出在线更新策略,利用激励和抑制损失更新分类滤波器,提高分类滤波器的判别能力。针对多峰强响应和弱响应状态下目标预测不准确的问题,通过偏移量和增添候选框修正目标位置,提高跟踪精度。实验验证提出的算法在行人视频序列上跟踪结果,精度达到了0.978,成功率达到了0.740,在NVIDIA GTX 1650显卡下有30 fps的实时速度。展开更多
基于管道的方法是目前任务型对话系统的主要构建方式,在工业界具有广泛应用,而对话状态跟踪(dialogue state tracking,DST)是任务型对话系统中的核心任务。面对传统的方法在多领域场景下表现较差的问题,该文结合语言模型预训练的最新研...基于管道的方法是目前任务型对话系统的主要构建方式,在工业界具有广泛应用,而对话状态跟踪(dialogue state tracking,DST)是任务型对话系统中的核心任务。面对传统的方法在多领域场景下表现较差的问题,该文结合语言模型预训练的最新研究成果,该文提出了一种基于BERT的对话状态跟踪算法Q2SM(query to state model)。该模型的上游使用了基于BERT的句子表征与相似度交互的槽判定模块,下游使用了一种面向对话状态跟踪任务的自定义RNN:DST-RNN。在WOZ 2.0和MultiWOZ 2.0两个数据集上的实验表明,Q2SM相比于之前的最好模型,分别在联合准确率和状态F1值两个评价指标上提升了1.09%和2.38%。此外,模型消融实验验证了,DST-RNN相比于传统的RNN或LSTM,不仅可以提升评价指标值,还可以加快模型的收敛速度。展开更多
文摘本文针对在行人跟踪过程中遇到的背景相似物干扰、行人之间的相互遮挡和背景杂乱等导致跟踪状态不稳定的问题,基于DIMP(learning discriminative model prediction for tracking)跟踪算法,提出了一种跟踪状态自适应的判别式单目标行人跟踪算法。跟踪过程中由分类滤波器和搜索区域进行卷积操作得到响应图,通过响应图判断跟踪状态,跟踪状态分为弱响应状态、多峰强响应状态、单峰强响应状态。针对多峰强响应状态下的干扰物影响,提出在线更新策略,利用激励和抑制损失更新分类滤波器,提高分类滤波器的判别能力。针对多峰强响应和弱响应状态下目标预测不准确的问题,通过偏移量和增添候选框修正目标位置,提高跟踪精度。实验验证提出的算法在行人视频序列上跟踪结果,精度达到了0.978,成功率达到了0.740,在NVIDIA GTX 1650显卡下有30 fps的实时速度。
文摘基于管道的方法是目前任务型对话系统的主要构建方式,在工业界具有广泛应用,而对话状态跟踪(dialogue state tracking,DST)是任务型对话系统中的核心任务。面对传统的方法在多领域场景下表现较差的问题,该文结合语言模型预训练的最新研究成果,该文提出了一种基于BERT的对话状态跟踪算法Q2SM(query to state model)。该模型的上游使用了基于BERT的句子表征与相似度交互的槽判定模块,下游使用了一种面向对话状态跟踪任务的自定义RNN:DST-RNN。在WOZ 2.0和MultiWOZ 2.0两个数据集上的实验表明,Q2SM相比于之前的最好模型,分别在联合准确率和状态F1值两个评价指标上提升了1.09%和2.38%。此外,模型消融实验验证了,DST-RNN相比于传统的RNN或LSTM,不仅可以提升评价指标值,还可以加快模型的收敛速度。