A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the p...A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the problem of precisely tracking of target is solved. Finally the validity of these methods is proven by the simulation results.展开更多
The 3D object visual tracking problem is studied for the robot vision system of the 220kV/330kV high-voltage live-line insulator cleaning robot. The SUSAN Edge based Scale Invariant Feature (SESIF) algorithm based 3D ...The 3D object visual tracking problem is studied for the robot vision system of the 220kV/330kV high-voltage live-line insulator cleaning robot. The SUSAN Edge based Scale Invariant Feature (SESIF) algorithm based 3D objects visual tracking is achieved in three stages: the first frame stage,tracking stage,and recovering stage. An SESIF based objects recognition algorithm is proposed to find initial location at both the first frame stage and recovering stage. An SESIF and Lie group based visual tracking algorithm is used to track 3D object. Experiments verify the algorithm's robustness. This algorithm will be used in the second generation of the 220kV/330kV high-voltage live-line insulator cleaning robot.展开更多
文摘A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the problem of precisely tracking of target is solved. Finally the validity of these methods is proven by the simulation results.
基金National High Technology Research and Development Programof China (863program,No.2002AA42D110-2)
文摘The 3D object visual tracking problem is studied for the robot vision system of the 220kV/330kV high-voltage live-line insulator cleaning robot. The SUSAN Edge based Scale Invariant Feature (SESIF) algorithm based 3D objects visual tracking is achieved in three stages: the first frame stage,tracking stage,and recovering stage. An SESIF based objects recognition algorithm is proposed to find initial location at both the first frame stage and recovering stage. An SESIF and Lie group based visual tracking algorithm is used to track 3D object. Experiments verify the algorithm's robustness. This algorithm will be used in the second generation of the 220kV/330kV high-voltage live-line insulator cleaning robot.