The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upst...The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upstream of the Yellow River (water- importing area). The long-term hydrologieal data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow eharacteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, water- importing area, and the streteh downstream of the water-exporting have synehronization in high-low flow relationship, whereas they display non- synchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological eompensation probability for rivers where water is diverted is about 25% to lO%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the water- exporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the water- exporting area.展开更多
The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general me...The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general method, called pair-copula construction, is introduced to functions are allowed to be introduced in this method. Correspondingly, the related characteristics of complex multivariate can be described by a cascade of pair-copula acting on two variables at a time. In the analysis of asynchronism-synchronism of regional precipitation in WED inter- basin water transfer areas, the pair-copula construction method is compared with the general modeling method of mul- tivariate copula. The results show that the local dependence structure would exist among hydrologic variables even in three-dimensional cases. In this situation, the general modeling method of multivariate copula would face difficulties in fitting distribution. However, the pair-copula construction method could capture the local information of hydrologic variables efficiently by introducing different types of copula distribution functions. Moreover, the compensation ca- pacity of water resources is strong in different hydrological areas of WED water transfer project. The asynchronous frequency of wetness and dryness is 69.64% and the favorable frequency for water transfer is 46.15%.展开更多
基金supported by the China Meteorological Data Sharing Service System,the Bureau of Hydrology,and Water Resources of Sichuan Province,China
文摘The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upstream of the Yellow River (water- importing area). The long-term hydrologieal data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow eharacteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, water- importing area, and the streteh downstream of the water-exporting have synehronization in high-low flow relationship, whereas they display non- synchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological eompensation probability for rivers where water is diverted is about 25% to lO%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the water- exporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the water- exporting area.
基金Supported by National Natural Science Foundation of China (No. 50979011)
文摘The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general method, called pair-copula construction, is introduced to functions are allowed to be introduced in this method. Correspondingly, the related characteristics of complex multivariate can be described by a cascade of pair-copula acting on two variables at a time. In the analysis of asynchronism-synchronism of regional precipitation in WED inter- basin water transfer areas, the pair-copula construction method is compared with the general modeling method of mul- tivariate copula. The results show that the local dependence structure would exist among hydrologic variables even in three-dimensional cases. In this situation, the general modeling method of multivariate copula would face difficulties in fitting distribution. However, the pair-copula construction method could capture the local information of hydrologic variables efficiently by introducing different types of copula distribution functions. Moreover, the compensation ca- pacity of water resources is strong in different hydrological areas of WED water transfer project. The asynchronous frequency of wetness and dryness is 69.64% and the favorable frequency for water transfer is 46.15%.