Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai...Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.展开更多
An L(j, k)-labeling of a graph G is an assignment of nonnegative integers to the vertices of G such that adjacent vertices receive integers which are at least j apart, and vertices at distance two receive integers w...An L(j, k)-labeling of a graph G is an assignment of nonnegative integers to the vertices of G such that adjacent vertices receive integers which are at least j apart, and vertices at distance two receive integers which are at least k apart. Given an L(j, k)-labeling f of G, define the L(j, k) edge span of f, βj,k(G,f) =max{ |f(x)-f(y)|: {x,y}∈E(G)}. The L(j,k) edge span of G, βj,k (G) is min βj,k( G, f), where the minimum runs over all L(j, k)-labelings f of G. The real L(.j, k)-labeling of a graph G is a generalization of the L(j, k)-labeling. It is an assignment of nonnegative real numbers to the vertices of G satisfying the same distance one and distance two conditions. The real L(j, k) edge span of a graph G is defined accordingly, and is denoted by βj,k(G). This paper investigates some properties of the L(j, k) edge span and the real L(j, k) edge span of graphs, and completely determines the edge spans of cycles and complete t-partite graphs.展开更多
The FLAC3D software was used to simulate and analyze numerically the displacement, stress and plastic zone distribu-tion characteristics of a large span intersection in a deep soft rock roadway after the surrounding r...The FLAC3D software was used to simulate and analyze numerically the displacement, stress and plastic zone distribu-tion characteristics of a large span intersection in a deep soft rock roadway after the surrounding rock was excavated. Our simula-tion results show that there are two kinds of dominating factors affecting roadway stability at points of intersection, one is the angle between horizontal stress and axial direction of the roadway and the other are the angles at the points of intersection. These results are based on a study we carried out as follows: first, we analyzed the failure mechanism of a large span intersection and then we built a mechanical model of a rock pillar at one of the points of intersection. At the end of this analysis, we obtained the failure characteristics of the critical parts on the large span intersection. Given these failure characteristics, we proposed a new supporting method, i.e., a Double-Bolt Control Technology (DBCT). By way of numerical simulation, DBCT can effectively control the deformation of the surrounding rock at the points of intersection in roadways.展开更多
Taking Sutong Bridge as the object investigated, the correctness of the geometry control method is verified by numerical simulation analysis. Taking the impact of geometric nonlinearity into account, the impacts of st...Taking Sutong Bridge as the object investigated, the correctness of the geometry control method is verified by numerical simulation analysis. Taking the impact of geometric nonlinearity into account, the impacts of structural geo- metric profile induced by temporary loads and temperature field during the construction procedure are investigated. The simulation results indicate that only the stage state of the structure during construction is affected. Satisfied outcome of construction control can be achieved based on ~eometrv control method.展开更多
Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stabili...Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stability of roof thickness, chamber and spacer pillar in actual mining was investigated; meanwhile, the formed goaf during mining is so vulnerable that surrounding rock collapses early. Based on this point, elasticity mechanics and limit span theory were used to study separately the roof thickness and the span limit of goaf formed in mining, and then a reasonable roof thickness of 8 m and goaf span of 14 m are proposed. In addition, the stability of roof thickness, chamber and spacer pillar were investigated and analyzed by using numerical analysis method; meanwhile, the field monitoring on the displacement of caving chamber was conducted. The results show that the maximum compressive stress of surrounding rock is 20 MPa, and the maximum tensile stress is 1.2 MPa, which is less than the ultimate tensile strength of 2.4 MPa. Moreover, plastic zone has little influence on stope stability. In addition, the displacement of 11 mm is also smaller. The displacement monitoring results are consistent with the numerical results. Thus, the roof thickness and span of goaf proposed are safe.展开更多
The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechan...The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechanism of wind pressure pulse events, the peak over threshold method was employed to study properties of this kind of events. The event duration time, the energy contribution, the number of the pulse events, and the distribution of average peak pressure were calculated. Probability density functions of some typical samples in separation region were also given. Results show that the non-Gaussian roof pressure is strong in the flow separation region owing to the wind pressure pulse events. Evaluations of the extreme peak pressures, which can be determined by the peak over threshold method effectively, are important to the design of building cladding.展开更多
It is considered thai the damage of the underground structures caused by earthquakes is minor for a long time. However, the catastrophic damages induced by several recent earthquakes (e. g. Kobe earthquake in 1995 )...It is considered thai the damage of the underground structures caused by earthquakes is minor for a long time. However, the catastrophic damages induced by several recent earthquakes (e. g. Kobe earthquake in 1995 ) revealed that the study on the dynamic properties of the underground structures is indispensable. The dynamic behavior and damage mechanism of underground structure are analyzed by using shaking table tests ( both shallow-and deep-buried) and numerical simulation (3D FEM) including horizontal and vertical input motions, individually and simultaneously. From the results, the underground structure collapsed due to strong horizontal forces although vertical deformation is not negligible. The vertical excitation increases the response of structure, especially the stress and shear stress at the upper section; the soil influenced the property of soilstructure system. In the same excitation, the response in shallow-buried test is larger than deep case. Both overburden and vertical earthquake play important roles in the response of structure and those are two critical aspects in the design of the large-span underground structures, such as subway stations.展开更多
Transonic single-degree-of-freedom(SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are inve...Transonic single-degree-of-freedom(SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are investigated using Unsteady Reynolds-Averaged Navier-Stokes(URANS) equations. The airfoil is free to vibrate in SDOF of pitching. It is found that, the coupling system may be unstable and SDOF self-excited pitching oscillations occur in pre-buffet flow condition, where the free-stream angle of attack(AOA) is lower than the buffet onset of a stationary airfoil. In the theory of classical aeroelasticity, this unstable phenomenon is defined as flutter. However, this transonic SDOF flutter is closely related to transonic buffet(unstable aerodynamic models) due to the following reasons. Firstly, the SDOF flutter occurs only when the free-stream AOA of the spring suspended airfoil is slightly lower than that of buffet onset, and the ratio of the structural characteristic frequency to the buffet frequency is within a limited range. Secondly, the response characteristics show a high correlation between the SDOF flutter and buffet. A similar "lock-in" phenomenon exists, when the coupling frequency follows the structural characteristic frequency. Finally, there is no sudden change of the response characteristics in the vicinity of buffet onset, that is, the curve of response amplitude with the free-stream AOA is nearly smooth. Therefore, transonic SDOF flutter is often interwoven with transonic buffet and shows some complex characteristics of response, which is different from the traditional flutter.展开更多
The smoothed particle hydrodynamics (SPH), as a fully Lagrangian particle method, has been suc- cessfully applied to astrophysical problems and extended to elastic dynamics and computational fluid dynamics. High order...The smoothed particle hydrodynamics (SPH), as a fully Lagrangian particle method, has been suc- cessfully applied to astrophysical problems and extended to elastic dynamics and computational fluid dynamics. High order derivatives have to be approximated when elastic dynamics problems are modeled. However, the approximation errors in SPH could lead to computational failure in the case that the order of derivative is high. A novel method was proposed in order to improve the accuracy of SPH method, which shows the relationship between the selected functions and their SPH approximations. The entire involved system was represented by a finite number of particles that carry individual mass and occupy individual space, and the integral interpo- lation was approximated by a summation interpolation. In addition, error comparison was made between SPH method with and without the present improvement.展开更多
基金Project(2017G006-N)supported by the Project of Science and Technology Research and Development Program of China Railway Corporation。
文摘Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.
基金The National Natural Science Foundation of China (No10971025)
文摘An L(j, k)-labeling of a graph G is an assignment of nonnegative integers to the vertices of G such that adjacent vertices receive integers which are at least j apart, and vertices at distance two receive integers which are at least k apart. Given an L(j, k)-labeling f of G, define the L(j, k) edge span of f, βj,k(G,f) =max{ |f(x)-f(y)|: {x,y}∈E(G)}. The L(j,k) edge span of G, βj,k (G) is min βj,k( G, f), where the minimum runs over all L(j, k)-labelings f of G. The real L(.j, k)-labeling of a graph G is a generalization of the L(j, k)-labeling. It is an assignment of nonnegative real numbers to the vertices of G satisfying the same distance one and distance two conditions. The real L(j, k) edge span of a graph G is defined accordingly, and is denoted by βj,k(G). This paper investigates some properties of the L(j, k) edge span and the real L(j, k) edge span of graphs, and completely determines the edge spans of cycles and complete t-partite graphs.
基金Financial supports for this work, provided by the Major Program of the National Natural Science Foundation of China (No.50490270)the National Basic Research Program of China (973) (No. 2006CB202200) the Innovation Term Project of Ministry of Education of China (No.IRT0656), are gratefully acknowledged
文摘The FLAC3D software was used to simulate and analyze numerically the displacement, stress and plastic zone distribu-tion characteristics of a large span intersection in a deep soft rock roadway after the surrounding rock was excavated. Our simula-tion results show that there are two kinds of dominating factors affecting roadway stability at points of intersection, one is the angle between horizontal stress and axial direction of the roadway and the other are the angles at the points of intersection. These results are based on a study we carried out as follows: first, we analyzed the failure mechanism of a large span intersection and then we built a mechanical model of a rock pillar at one of the points of intersection. At the end of this analysis, we obtained the failure characteristics of the critical parts on the large span intersection. Given these failure characteristics, we proposed a new supporting method, i.e., a Double-Bolt Control Technology (DBCT). By way of numerical simulation, DBCT can effectively control the deformation of the surrounding rock at the points of intersection in roadways.
基金National Science and Technology Supporting Program of China ( No. 2006BAG04B03)
文摘Taking Sutong Bridge as the object investigated, the correctness of the geometry control method is verified by numerical simulation analysis. Taking the impact of geometric nonlinearity into account, the impacts of structural geo- metric profile induced by temporary loads and temperature field during the construction procedure are investigated. The simulation results indicate that only the stage state of the structure during construction is affected. Satisfied outcome of construction control can be achieved based on ~eometrv control method.
基金Project(2012BAK09B02-05)supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan PeriodProject(11KF02)supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety
文摘Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stability of roof thickness, chamber and spacer pillar in actual mining was investigated; meanwhile, the formed goaf during mining is so vulnerable that surrounding rock collapses early. Based on this point, elasticity mechanics and limit span theory were used to study separately the roof thickness and the span limit of goaf formed in mining, and then a reasonable roof thickness of 8 m and goaf span of 14 m are proposed. In addition, the stability of roof thickness, chamber and spacer pillar were investigated and analyzed by using numerical analysis method; meanwhile, the field monitoring on the displacement of caving chamber was conducted. The results show that the maximum compressive stress of surrounding rock is 20 MPa, and the maximum tensile stress is 1.2 MPa, which is less than the ultimate tensile strength of 2.4 MPa. Moreover, plastic zone has little influence on stope stability. In addition, the displacement of 11 mm is also smaller. The displacement monitoring results are consistent with the numerical results. Thus, the roof thickness and span of goaf proposed are safe.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50708030 and 90815021)
文摘The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechanism of wind pressure pulse events, the peak over threshold method was employed to study properties of this kind of events. The event duration time, the energy contribution, the number of the pulse events, and the distribution of average peak pressure were calculated. Probability density functions of some typical samples in separation region were also given. Results show that the non-Gaussian roof pressure is strong in the flow separation region owing to the wind pressure pulse events. Evaluations of the extreme peak pressures, which can be determined by the peak over threshold method effectively, are important to the design of building cladding.
文摘It is considered thai the damage of the underground structures caused by earthquakes is minor for a long time. However, the catastrophic damages induced by several recent earthquakes (e. g. Kobe earthquake in 1995 ) revealed that the study on the dynamic properties of the underground structures is indispensable. The dynamic behavior and damage mechanism of underground structure are analyzed by using shaking table tests ( both shallow-and deep-buried) and numerical simulation (3D FEM) including horizontal and vertical input motions, individually and simultaneously. From the results, the underground structure collapsed due to strong horizontal forces although vertical deformation is not negligible. The vertical excitation increases the response of structure, especially the stress and shear stress at the upper section; the soil influenced the property of soilstructure system. In the same excitation, the response in shallow-buried test is larger than deep case. Both overburden and vertical earthquake play important roles in the response of structure and those are two critical aspects in the design of the large-span underground structures, such as subway stations.
基金supported by the New Century Program for Excellent Talents of Ministry of Education of China(Grant No.NCET-13-0478)National Natural Science Foundation of China(Grant No.11172237)
文摘Transonic single-degree-of-freedom(SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are investigated using Unsteady Reynolds-Averaged Navier-Stokes(URANS) equations. The airfoil is free to vibrate in SDOF of pitching. It is found that, the coupling system may be unstable and SDOF self-excited pitching oscillations occur in pre-buffet flow condition, where the free-stream angle of attack(AOA) is lower than the buffet onset of a stationary airfoil. In the theory of classical aeroelasticity, this unstable phenomenon is defined as flutter. However, this transonic SDOF flutter is closely related to transonic buffet(unstable aerodynamic models) due to the following reasons. Firstly, the SDOF flutter occurs only when the free-stream AOA of the spring suspended airfoil is slightly lower than that of buffet onset, and the ratio of the structural characteristic frequency to the buffet frequency is within a limited range. Secondly, the response characteristics show a high correlation between the SDOF flutter and buffet. A similar "lock-in" phenomenon exists, when the coupling frequency follows the structural characteristic frequency. Finally, there is no sudden change of the response characteristics in the vicinity of buffet onset, that is, the curve of response amplitude with the free-stream AOA is nearly smooth. Therefore, transonic SDOF flutter is often interwoven with transonic buffet and shows some complex characteristics of response, which is different from the traditional flutter.
基金the Key Project of Fund of Science and Technology Development of Shanghai (No. 07JC14023)the National Natural Science Foundation of China(No. 50778111)
文摘The smoothed particle hydrodynamics (SPH), as a fully Lagrangian particle method, has been suc- cessfully applied to astrophysical problems and extended to elastic dynamics and computational fluid dynamics. High order derivatives have to be approximated when elastic dynamics problems are modeled. However, the approximation errors in SPH could lead to computational failure in the case that the order of derivative is high. A novel method was proposed in order to improve the accuracy of SPH method, which shows the relationship between the selected functions and their SPH approximations. The entire involved system was represented by a finite number of particles that carry individual mass and occupy individual space, and the integral interpo- lation was approximated by a summation interpolation. In addition, error comparison was made between SPH method with and without the present improvement.