期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合分层深度网络与双向五元组损失的跨模态异常检测
1
作者 范烨 彭淑娟 +2 位作者 柳欣 崔振 王楠楠 《计算机研究与发展》 EI CSCD 北大核心 2022年第12期2770-2780,共11页
大数据环境下的跨模态异常检测是一个非常有价值且极具挑战性的工作.针对目前已有跨模态异常检测框架对数据异常值类型检测不全面以及数据利用率较低的问题,提出了一个结合分层深度网络与相似度双向五元组损失的跨模态异常检测方法.首先... 大数据环境下的跨模态异常检测是一个非常有价值且极具挑战性的工作.针对目前已有跨模态异常检测框架对数据异常值类型检测不全面以及数据利用率较低的问题,提出了一个结合分层深度网络与相似度双向五元组损失的跨模态异常检测方法.首先,提出的框架引入一个单视图异常检测网络层,通过模态内近邻样本相似度来检测数据样本中是否存在属性异常与部分属性类别异常点;接着,提出基于相似度双向五元组损失的双分支深度网络用于检测数据中的类别异常与剩余部分的属性类别异常,该损失一方面能够使不同属性数据正交化,另一方面使得相同属性数据之间线性相关,从而有效地加大了不同属性数据之间的特征差异性,以及增加了相同属性之间的特征相关性;同时,提出的双分支网络通过模态间双向约束和模态内的邻域约束,极大提高了数据利用率和模型的泛化能力.实验结果表明,所提出的框架可以全面检测出不同模态中所有的异常类型样本点,并且表现优于现有的可应用于跨模态异常检测的方法,优势明显. 展开更多
关键词 跨模态异常检测 分层深度网络 双向五元组损失 邻域约束 双向约束
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部