期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于低秩双线性池化注意力网络的舰船目标识别
被引量:
3
1
作者
关欣
国佳恩
衣晓
《系统工程与电子技术》
EI
CSCD
北大核心
2023年第5期1305-1314,共10页
针对多模态舰船图像融合识别质量不高等问题,构建了一种端到端的低秩双线性池化注意力网络。首先对各模态原始特征向量基于跨模类别中心进行注意力加权重构,使不同模态特征更好地关注公共类别信息;然后采用双线性池化捕获不同模态图像...
针对多模态舰船图像融合识别质量不高等问题,构建了一种端到端的低秩双线性池化注意力网络。首先对各模态原始特征向量基于跨模类别中心进行注意力加权重构,使不同模态特征更好地关注公共类别信息;然后采用双线性池化捕获不同模态图像的交互信息,并引入权重低秩分解降低网络参数规模;最后依靠特征级联实现模态信息的交互与互补,并设计联合损失提升网络跨模态融合识别效果。实验结果表明,相比现有融合方法,所提方法可有效提升多模态遥感舰船图像的融合识别效果,在公开的遥感舰船数据集上取得了较高的识别准确率。
展开更多
关键词
舰船识别
双线性池化
跨
模
类别中心
注意力加权
跨模联合损失
下载PDF
职称材料
题名
基于低秩双线性池化注意力网络的舰船目标识别
被引量:
3
1
作者
关欣
国佳恩
衣晓
机构
海军航空大学
中国人民解放军
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2023年第5期1305-1314,共10页
基金
国防科技卓越青年科学基金(2017-JCJQ-ZQ-003)
泰山学者工程专项经费(ts 201712072)资助课题。
文摘
针对多模态舰船图像融合识别质量不高等问题,构建了一种端到端的低秩双线性池化注意力网络。首先对各模态原始特征向量基于跨模类别中心进行注意力加权重构,使不同模态特征更好地关注公共类别信息;然后采用双线性池化捕获不同模态图像的交互信息,并引入权重低秩分解降低网络参数规模;最后依靠特征级联实现模态信息的交互与互补,并设计联合损失提升网络跨模态融合识别效果。实验结果表明,相比现有融合方法,所提方法可有效提升多模态遥感舰船图像的融合识别效果,在公开的遥感舰船数据集上取得了较高的识别准确率。
关键词
舰船识别
双线性池化
跨
模
类别中心
注意力加权
跨模联合损失
Keywords
ship recognition
bilinear pooling
cross-modal category center
attention weighting
cross-modal joint loss
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于低秩双线性池化注意力网络的舰船目标识别
关欣
国佳恩
衣晓
《系统工程与电子技术》
EI
CSCD
北大核心
2023
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部