期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
跨级可变形Transformer编解码视网膜图像分割算法
被引量:
2
1
作者
梁礼明
阳渊
+1 位作者
何安军
李仁杰
《无线电工程》
北大核心
2023年第9期1990-2001,共12页
眼底视网膜血管图像分割对青光眼、糖尿病等疾病的预防和诊断具有重要意义。针对视网膜血管图像边缘分割模糊、微细血管漏缺和模型感受野不足等问题,提出了一种跨级可变形Transformer编解码(Cross-stage Deformable Transformer Encodin...
眼底视网膜血管图像分割对青光眼、糖尿病等疾病的预防和诊断具有重要意义。针对视网膜血管图像边缘分割模糊、微细血管漏缺和模型感受野不足等问题,提出了一种跨级可变形Transformer编解码(Cross-stage Deformable Transformer Encoding and Decoding Net,CTED-Net)视网膜图像分割算法。在特征提取网络中融入通道像素增强模块和跨级融合骨干,实现对视网膜血管全局特征的粗提取;在网络编码部分加入可变形自适应编码Transformer模块(Deformable Adaptive Coding Transformer Module,DACT),通过可变形编码的方式增大模型感受野;在编解码结构底层加入深层语义门控注意模块,实现对视网膜血管深层特征的充分学习,以改善血管图像边缘分割模糊的问题。在模型训练阶段采用加权交叉焦点损失函数,克服视网膜血管图像样本不平衡的问题。在公共数据集DRIVE和STARE上进行仿真实验,所提算法灵敏度、特异性、准确率和AUC指标在DRIVE上达到84.25%、98.17%、96.46%和98.70%,在STARE上达到80.22%、98.64%、96.71%和98.78%。通过与其他先进算法对比分析可以看出,所提算法分割效果可靠且整体性能先进。
展开更多
关键词
可变形Transformer
跨级融合骨干
加权交叉焦点损失函数
视网膜血管图像分割
深层语义门控注意模块
下载PDF
职称材料
题名
跨级可变形Transformer编解码视网膜图像分割算法
被引量:
2
1
作者
梁礼明
阳渊
何安军
李仁杰
机构
江西理工大学电气工程与自动化学院
出处
《无线电工程》
北大核心
2023年第9期1990-2001,共12页
基金
国家自然科学基金(51365017,61463018)
江西省自然科学基金面上项目(20192BAB205084)
+1 种基金
江西省教育厅科学技术研究重点项目(GJJ170491)
江西省研究生创新专项资金项目(YC2022-S676)。
文摘
眼底视网膜血管图像分割对青光眼、糖尿病等疾病的预防和诊断具有重要意义。针对视网膜血管图像边缘分割模糊、微细血管漏缺和模型感受野不足等问题,提出了一种跨级可变形Transformer编解码(Cross-stage Deformable Transformer Encoding and Decoding Net,CTED-Net)视网膜图像分割算法。在特征提取网络中融入通道像素增强模块和跨级融合骨干,实现对视网膜血管全局特征的粗提取;在网络编码部分加入可变形自适应编码Transformer模块(Deformable Adaptive Coding Transformer Module,DACT),通过可变形编码的方式增大模型感受野;在编解码结构底层加入深层语义门控注意模块,实现对视网膜血管深层特征的充分学习,以改善血管图像边缘分割模糊的问题。在模型训练阶段采用加权交叉焦点损失函数,克服视网膜血管图像样本不平衡的问题。在公共数据集DRIVE和STARE上进行仿真实验,所提算法灵敏度、特异性、准确率和AUC指标在DRIVE上达到84.25%、98.17%、96.46%和98.70%,在STARE上达到80.22%、98.64%、96.71%和98.78%。通过与其他先进算法对比分析可以看出,所提算法分割效果可靠且整体性能先进。
关键词
可变形Transformer
跨级融合骨干
加权交叉焦点损失函数
视网膜血管图像分割
深层语义门控注意模块
Keywords
deformable Transformer
cross-level fusion backbone
weighted cross-focus loss function
retinal vascular image segmentation
deep semantic gated attention module
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
跨级可变形Transformer编解码视网膜图像分割算法
梁礼明
阳渊
何安军
李仁杰
《无线电工程》
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部