期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合多尺度信息和跨维特征引导的轻量行人检测
1
作者 张云佐 李文博 郭威 《光电子.激光》 CAS CSCD 北大核心 2024年第4期344-350,共7页
针对复杂道路场景下行人检测精度与速度难以提升的问题,提出一种融合多尺度信息和跨维特征引导的轻量级行人检测算法。首先以高性能检测器YOLOX为基础框架,构建多尺度轻量卷积并嵌入主干网络中,以获取多尺度特征信息。然后设计了一种端... 针对复杂道路场景下行人检测精度与速度难以提升的问题,提出一种融合多尺度信息和跨维特征引导的轻量级行人检测算法。首先以高性能检测器YOLOX为基础框架,构建多尺度轻量卷积并嵌入主干网络中,以获取多尺度特征信息。然后设计了一种端到端的轻量特征引导注意力模块,采用跨维通道加权的方式将空间信息与通道信息融合,引导模型关注行人的可视区域。最后为减少模型在轻量化过程中特征信息的损失,使用增大感受野的深度可分离卷积构建特征融合网络。实验结果表明,相比于其他主流检测算法,所提算法在KITTI数据集上达到了71.03%的检测精度和80 FPS的检测速度,在背景复杂、密集遮挡、尺度不一等场景中都具有较好的鲁棒性和实时性。 展开更多
关键词 行人检测 多尺度 跨维特征引导 特征融合 轻量化模型
原文传递
面向多元场景的轻量级行人检测
2
作者 张云佐 李文博 +1 位作者 郭威 宋洲臣 《光学精密工程》 EI CAS CSCD 北大核心 2022年第14期1764-1774,共11页
多元场景中行人检测是当前计算机视觉领域的研究热点,尽管备受关注的深度学习能够提供很高的检测精度,但随之而来的高复杂度运算严重限制了其在可移动平台上的部署。为此,本文提出了一种面向多元场景的轻量级行人检测算法。该算法首先... 多元场景中行人检测是当前计算机视觉领域的研究热点,尽管备受关注的深度学习能够提供很高的检测精度,但随之而来的高复杂度运算严重限制了其在可移动平台上的部署。为此,本文提出了一种面向多元场景的轻量级行人检测算法。该算法首先构建深、浅层特征融合网络以学习多尺度行人的纹理特性;然后设计了跨维特征引导注意力模块,用于保留特征提取过程中通道间、空间内的交互信息。最后基于剪枝策略去除模型中的冗余通道,以降低算法复杂度。此外,本文还设计了自适应Gamma矫正算法,以消减多元场景下光照、阴影等外界干扰对检测结果的影响。实验结果表明,本文所提方法在检测精度相当的条件下,能将模型大小压缩至10 MB,处理速度可达93 Frame/s,明显优于当前主流方法。 展开更多
关键词 行人检测 多元场景 轻量级网络 跨维特征引导 模型压缩
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部