通过软件缺陷预测可以有效地提高软件测试效率,保证软件产品的质量。针对新开发的项目面临训练数据不足,标注代价高以及源项目与目标项目的缺陷模式难以匹配的问题,提出了基于主动学习的跨项目软件缺陷预测方法。首先使用主动学习方法...通过软件缺陷预测可以有效地提高软件测试效率,保证软件产品的质量。针对新开发的项目面临训练数据不足,标注代价高以及源项目与目标项目的缺陷模式难以匹配的问题,提出了基于主动学习的跨项目软件缺陷预测方法。首先使用主动学习方法对目标项目进行筛选标注,其次将得到的标签集与跨项目数据进行数据融合和模式匹配,最后构建跨项目软件缺陷预测模型。采用真实的软件缺陷数据进行实验,在保证预测率的前提下,曲线下面积(area under curve, AUC)能够达到0.692,与传统方法相比综合性能均有显著提升。结果表明:所提方法可以通过模式匹配有效提高跨项目软件缺陷预测模型的性能。展开更多
针对跨项目软件缺陷预测过程中,软件缺陷数据存在无关信息或数据冗余等问题,提出融合多策略特征筛选的跨项目软件缺陷预测(cross-project software defect prediction based on Multi-Policy Feature Filtering,MPFF)方法。采用多策略...针对跨项目软件缺陷预测过程中,软件缺陷数据存在无关信息或数据冗余等问题,提出融合多策略特征筛选的跨项目软件缺陷预测(cross-project software defect prediction based on Multi-Policy Feature Filtering,MPFF)方法。采用多策略筛选方法与过采样方法进行数据预处理;使用代价敏感的域自适应方法进行分类,分类过程使用少量已标记目标项目数据改善项目间分布差异;在AEEEM、NASA MDP及SOFTLAB数据集上进行了不同度量下预测实验。实验结果表明,在同构度量下MPFF方法相比Burank filter、Peters filter、TCA+和TrAdaBoost方法预测效果最佳。展开更多
文摘通过软件缺陷预测可以有效地提高软件测试效率,保证软件产品的质量。针对新开发的项目面临训练数据不足,标注代价高以及源项目与目标项目的缺陷模式难以匹配的问题,提出了基于主动学习的跨项目软件缺陷预测方法。首先使用主动学习方法对目标项目进行筛选标注,其次将得到的标签集与跨项目数据进行数据融合和模式匹配,最后构建跨项目软件缺陷预测模型。采用真实的软件缺陷数据进行实验,在保证预测率的前提下,曲线下面积(area under curve, AUC)能够达到0.692,与传统方法相比综合性能均有显著提升。结果表明:所提方法可以通过模式匹配有效提高跨项目软件缺陷预测模型的性能。