Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning usi...Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.展开更多
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ...A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.展开更多
A weighted time-based global hierarchical path planning method is proposed to obtain the global optimal path from the starting point to the destination with time optimal control. First, the grid-or graph-based modelin...A weighted time-based global hierarchical path planning method is proposed to obtain the global optimal path from the starting point to the destination with time optimal control. First, the grid-or graph-based modeling is performed and the environment is divided into a set of grids or nodes. Then two time-based features of time interval and time cost are presented. The time intervals for each grid are built, during each interval the condition of the grid remains stable, and a time cost of passing through the grid is defined and assigned to each interval. Furthermore, the weight is introduced for taking both time and distance into consideration, and thus a sequence of multiscale paths with total time cost can be achieved. Experimental results show that the proposed method can handle the complex dynamic environment, obtain the global time optimal path and has the potential to be applied to the autonomous robot navigation and traffic environment.展开更多
Because of the limitations of electric vehicle(EV)battery technology and relevant supporting facilities,there is a great risk of breakdown of EVs during driving.The resulting driver“range anxiety”greatly affects the...Because of the limitations of electric vehicle(EV)battery technology and relevant supporting facilities,there is a great risk of breakdown of EVs during driving.The resulting driver“range anxiety”greatly affects the travel quality of EVs.These limitations should be overcome to promote the use of EVs.In this study,a method for travel path planning considering EV power supply was developed.First,based on real-time road conditions,a dynamic energy model of EVs was established considering the driving energy and accessory energy.Second,a multi-objective travel path planning model of EVs was constructed considering the power supply,taking the distance,time,energy,and charging cost as the optimization objectives.Finally,taking the actual traffic network of 15 km×15 km area in a city as the research object,the model was simulated and verified in MATLAB based on Dijkstra shortest path algorithm.The simulation results show that compared with the traditional route planning method,the total distance in the proposed optimal route planning method increased by 1.18%,but the energy consumption,charging cost,and driving time decreased by 11.62%,41.26%and 11.00%,respectively,thus effectively reducing the travel cost of EVs and improving the driving quality of EVs.展开更多
Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, concepti...Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.展开更多
To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method ...To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment.展开更多
The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins ...The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins model is used to approximate the dynamics of UAVs.Based on the assumption,the path planning problem of UAVs in MTST can be formulated as a Dubins traveling salesman problem(DTSP).By considering its prohibitively high computational cost,the Dubins paths under terminal heading relaxation are introduced,which leads to significant reduction of the optimization scale and difficulty of the whole problem.Meanwhile,in view of the impact of wind on UAVs' paths,the notion of virtual target is proposed.The application of the idea successfully converts the Dubins path planning problem from an initial configuration to a target in wind into a problem of finding the minimal root of a transcendental equation.Then,the Dubins tour is derived by using differential evolution(DE) algorithm which employs random-key encoding technique to optimize the visiting sequence of waypoints.Finally,the effectiveness and efficiency of the proposed algorithm are demonstrated through computational experiments.Numerical results exhibit that the proposed algorithm can produce high quality solutions to the problem.展开更多
A theoretical study was conducted on finding optimal paths in transportation networks where link travel times were stochastic and time-dependent(STD). The methodology of relative robust optimization was applied as mea...A theoretical study was conducted on finding optimal paths in transportation networks where link travel times were stochastic and time-dependent(STD). The methodology of relative robust optimization was applied as measures for comparing time-varying, random path travel times for a priori optimization. In accordance with the situation in real world, a stochastic consistent condition was provided for the STD networks and under this condition, a mathematical proof was given that the STD robust optimal path problem can be simplified into a minimum problem in specific time-dependent networks. A label setting algorithm was designed and tested to find travelers' robust optimal path in a sampled STD network with computation complexity of O(n2+n·m). The validity of the robust approach and the designed algorithm were confirmed in the computational tests. Compared with conventional probability approach, the proposed approach is simple and efficient, and also has a good application prospect in navigation system.展开更多
This paper presents an optimal trajectory planning method of the dual arm manipulator using Dual Arm Manipulability Measure (DAMM). When the manipulator carries an object from a certain position to the destination, ...This paper presents an optimal trajectory planning method of the dual arm manipulator using Dual Arm Manipulability Measure (DAMM). When the manipulator carries an object from a certain position to the destination, various trajectory candidates could be conskied. TO select the optimal trajectacy from the several candidates, energy, time, and the length of the tmjecttay could be utilized. In order to quantify the carrying effidency of dual-arms, DAMM has been defined and applied for the decision of the optimal path. DAMM is defined as the interaction of the manipulability ellipsoids of the dualarras, while the manipulability measure irdicates the relationship between the joint velocity and the Cartesian velocity for each ann. The cast function for achieving the optimal path is defined as the Summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-ann robot with distributed controllers for synchronization control has been developed and used for the experiments.展开更多
The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented. The combination of different cutters is adopt aiming at short machining time and high pre...The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented. The combination of different cutters is adopt aiming at short machining time and high precision. The optimal small cutter is determined based on the geometric information of the points where a cutter most probably collide with the machined surface. Several larger cutters are selected to machine the surface in order to find the interference-free area. The difference of machining time for this area between the optimal small cutter and the large cutters is calculated. The functional relationship between the machining time and the radius of a cutter is established, by which the optimal number of cutters is obtained. The combination of cutters, which possesses the minimum overall machining time, is selected as the optimal cutter sizes. A case study has demonstrated the validity of the proposed methodology and algorithms.展开更多
Path planning of Uninhabited Aerial Vehicle(UAV) is a complicated global optimum problem.In the paper,an improved Gravitational Search Algorithm(GSA) was proposed to solve the path planning problem.Gravitational Searc...Path planning of Uninhabited Aerial Vehicle(UAV) is a complicated global optimum problem.In the paper,an improved Gravitational Search Algorithm(GSA) was proposed to solve the path planning problem.Gravitational Search Algorithm(GSA) is a newly presented under the inspiration of the Newtonian gravity,and it is easy to fall local best.On the basis of introducing the idea of memory and social information of Particle Swarm Optimization(PSO),a novel moving strategy in the searching space was designed,which can improve the quality of the optimal solution.Subsequently,a weighted value was assigned to inertia mass of every agent in each iteration process to accelerate the convergence speed of the search.Particle position was updated according to the selection rules of survival of the fittest.In this way,the population is always moving in the direction of the optimal solution.The feasibility and effectiveness of our improved GSA approach was verified by comparative experimental results with PSO,basic GSA and two other GSA models.展开更多
基金Supported by State Key Laboratory of Robotics and System (HIT) under Grant No.SKLRS200706the Heilongjiang Scientific Research Foundation for Postdoctoral Financial Assistance under Grant No.323630221the Project of Harbin Technological Talent Research Foundation under Grant No.RC2006QN009015
文摘Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.
文摘A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.
基金Supported by the National Natural Science Foundation of China(No.61100143,No.61370128)the Program for New Century Excellent Talents in University of the Ministry of Education of China(NCET-13-0659)Beijing Higher Education Young Elite Teacher Project(YETP0583)
文摘A weighted time-based global hierarchical path planning method is proposed to obtain the global optimal path from the starting point to the destination with time optimal control. First, the grid-or graph-based modeling is performed and the environment is divided into a set of grids or nodes. Then two time-based features of time interval and time cost are presented. The time intervals for each grid are built, during each interval the condition of the grid remains stable, and a time cost of passing through the grid is defined and assigned to each interval. Furthermore, the weight is introduced for taking both time and distance into consideration, and thus a sequence of multiscale paths with total time cost can be achieved. Experimental results show that the proposed method can handle the complex dynamic environment, obtain the global time optimal path and has the potential to be applied to the autonomous robot navigation and traffic environment.
基金Projects(51908388,51508315,51905320)supported by the National Natural Science Foundation of ChinaProject(2019 JZZY 010911)supported by the Key R&D Program of Shandong Province,China+1 种基金Project supported by the Shandong University of Technology&Zibo City Integration Develo pment Project,ChinaProject(ZR 2021 MG 012)supported by Shandong Provincial Natural Science Foundation,China。
文摘Because of the limitations of electric vehicle(EV)battery technology and relevant supporting facilities,there is a great risk of breakdown of EVs during driving.The resulting driver“range anxiety”greatly affects the travel quality of EVs.These limitations should be overcome to promote the use of EVs.In this study,a method for travel path planning considering EV power supply was developed.First,based on real-time road conditions,a dynamic energy model of EVs was established considering the driving energy and accessory energy.Second,a multi-objective travel path planning model of EVs was constructed considering the power supply,taking the distance,time,energy,and charging cost as the optimization objectives.Finally,taking the actual traffic network of 15 km×15 km area in a city as the research object,the model was simulated and verified in MATLAB based on Dijkstra shortest path algorithm.The simulation results show that compared with the traditional route planning method,the total distance in the proposed optimal route planning method increased by 1.18%,but the energy consumption,charging cost,and driving time decreased by 11.62%,41.26%and 11.00%,respectively,thus effectively reducing the travel cost of EVs and improving the driving quality of EVs.
基金Projects(60234030, 60404021) supported by the National Natural Science Foundation of China
文摘Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.
基金Supported by the National High Technology Research and Development Programme of China( No. 2006AA04Z245 ) and China Postdoctoral Science Foundation ( No. 200904500988 ).
文摘To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment.
基金Project(61120106010)supported by the Projects of Major International(Regional)Joint Research Program Nature Science Foundation of ChinaProject(61304215,61203078)supported by National Natural Science Foundation of China+1 种基金Project(2013000704)supported by the Beijing Outstanding Ph.D.Program Mentor,ChinaProject(61321002)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins model is used to approximate the dynamics of UAVs.Based on the assumption,the path planning problem of UAVs in MTST can be formulated as a Dubins traveling salesman problem(DTSP).By considering its prohibitively high computational cost,the Dubins paths under terminal heading relaxation are introduced,which leads to significant reduction of the optimization scale and difficulty of the whole problem.Meanwhile,in view of the impact of wind on UAVs' paths,the notion of virtual target is proposed.The application of the idea successfully converts the Dubins path planning problem from an initial configuration to a target in wind into a problem of finding the minimal root of a transcendental equation.Then,the Dubins tour is derived by using differential evolution(DE) algorithm which employs random-key encoding technique to optimize the visiting sequence of waypoints.Finally,the effectiveness and efficiency of the proposed algorithm are demonstrated through computational experiments.Numerical results exhibit that the proposed algorithm can produce high quality solutions to the problem.
基金Project(71001079)supported by the National Natural Science Foundation of China
文摘A theoretical study was conducted on finding optimal paths in transportation networks where link travel times were stochastic and time-dependent(STD). The methodology of relative robust optimization was applied as measures for comparing time-varying, random path travel times for a priori optimization. In accordance with the situation in real world, a stochastic consistent condition was provided for the STD networks and under this condition, a mathematical proof was given that the STD robust optimal path problem can be simplified into a minimum problem in specific time-dependent networks. A label setting algorithm was designed and tested to find travelers' robust optimal path in a sampled STD network with computation complexity of O(n2+n·m). The validity of the robust approach and the designed algorithm were confirmed in the computational tests. Compared with conventional probability approach, the proposed approach is simple and efficient, and also has a good application prospect in navigation system.
基金supported bythe MKE(The Ministry of Knowledge Economy,Korea)the ITRC(Information Technology Research Center)support program(NIPA-2010-C1090-1021-0010)
文摘This paper presents an optimal trajectory planning method of the dual arm manipulator using Dual Arm Manipulability Measure (DAMM). When the manipulator carries an object from a certain position to the destination, various trajectory candidates could be conskied. TO select the optimal trajectacy from the several candidates, energy, time, and the length of the tmjecttay could be utilized. In order to quantify the carrying effidency of dual-arms, DAMM has been defined and applied for the decision of the optimal path. DAMM is defined as the interaction of the manipulability ellipsoids of the dualarras, while the manipulability measure irdicates the relationship between the joint velocity and the Cartesian velocity for each ann. The cast function for achieving the optimal path is defined as the Summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-ann robot with distributed controllers for synchronization control has been developed and used for the experiments.
基金Funded by the Doctorate Degree Program Foundation of the Ministry of Education (No. 2000061120)
文摘The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented. The combination of different cutters is adopt aiming at short machining time and high precision. The optimal small cutter is determined based on the geometric information of the points where a cutter most probably collide with the machined surface. Several larger cutters are selected to machine the surface in order to find the interference-free area. The difference of machining time for this area between the optimal small cutter and the large cutters is calculated. The functional relationship between the machining time and the radius of a cutter is established, by which the optimal number of cutters is obtained. The combination of cutters, which possesses the minimum overall machining time, is selected as the optimal cutter sizes. A case study has demonstrated the validity of the proposed methodology and algorithms.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60975072,60604009)the Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0021)+1 种基金the Aeronautical Foundation of China (Grant No. 20115151019)the Fundamental Research Funds for the Central Universities of China
文摘Path planning of Uninhabited Aerial Vehicle(UAV) is a complicated global optimum problem.In the paper,an improved Gravitational Search Algorithm(GSA) was proposed to solve the path planning problem.Gravitational Search Algorithm(GSA) is a newly presented under the inspiration of the Newtonian gravity,and it is easy to fall local best.On the basis of introducing the idea of memory and social information of Particle Swarm Optimization(PSO),a novel moving strategy in the searching space was designed,which can improve the quality of the optimal solution.Subsequently,a weighted value was assigned to inertia mass of every agent in each iteration process to accelerate the convergence speed of the search.Particle position was updated according to the selection rules of survival of the fittest.In this way,the population is always moving in the direction of the optimal solution.The feasibility and effectiveness of our improved GSA approach was verified by comparative experimental results with PSO,basic GSA and two other GSA models.