期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
适用于图像超分辨率的多路径融合增强网络 被引量:1
1
作者 沈俊晖 薛丽霞 +1 位作者 汪荣贵 杨娟 《微电子学与计算机》 2024年第3期59-70,共12页
卷积神经网络(Convolutional Neural Network,CNN)在单幅图像的超分辨率重建方面表现出了非常强大的能力,相比传统方法有着明显的改进。然而,尽管这些方法非常成功,但是由于需要大量的计算资源,直接应用于一些边缘设备并不现实。为了解... 卷积神经网络(Convolutional Neural Network,CNN)在单幅图像的超分辨率重建方面表现出了非常强大的能力,相比传统方法有着明显的改进。然而,尽管这些方法非常成功,但是由于需要大量的计算资源,直接应用于一些边缘设备并不现实。为了解决该问题,设计了一种轻量级的图像超分辨率重建网络——多路径融合增强网络(Multi-path Fusion Enhancement Network,MFEN)。具体来说,提出了一个新颖的融合注意力增强模块(Fusion Attention Enhancement Block,FAEB)作为多路径融合增强网络的主要构建模块。融合注意力增强模块由一条主干分支和两条层级分支构成:主干分支由堆叠的增强像素注意力模块组成,负责对特征图实现深度特征学习;层级分支则负责提取并融合不同大小感受野的特征图,从而实现多尺度特征学习。层级分支的融合方式则是以相邻的增强像素注意力模块输出为分支输入,通过自适应注意力模块(Self-Adaptive Attention Module,SAAM)来动态地增强不同大小感受野特征的融合程度,进一步补全特征信息,从而实现更全面、更精准的特征学习。大量实验表明,该多路径融合增强网络在基准测试集上具有更高的准确性。 展开更多
关键词 路径融合增强网络 轻量化图像超分辨率重建 多尺度特征融合 自适应注意力 卷积神经网络
下载PDF
AS-PANet:改进路径增强网络的重叠染色体实例分割 被引量:20
2
作者 林成创 赵淦森 +3 位作者 尹爱华 丁笔超 郭莉 陈汉彪 《中国图象图形学报》 CSCD 北大核心 2020年第10期2271-2280,共10页
目的染色体是遗传信息的重要载体,健康的人体细胞中包含46条染色体,包括22对常染色体和1对性染色体。染色体核型化分析是产前诊断和遗产疾病诊断的重要且常用方法。染色体核型化分析是指从分裂中期的细胞显微镜图像中,分割出染色体并根... 目的染色体是遗传信息的重要载体,健康的人体细胞中包含46条染色体,包括22对常染色体和1对性染色体。染色体核型化分析是产前诊断和遗产疾病诊断的重要且常用方法。染色体核型化分析是指从分裂中期的细胞显微镜图像中,分割出染色体并根据染色体的条带进行分组排列的过程。染色体核型化分析通常由细胞学家手工完成,但是这个过程非常费时、繁琐且容易出错。由于染色体的非刚性特质,多条染色体之间存在重叠及交叉现象,致使染色体实例分割非常困难。染色体分割是染色体核型化分析过程中最重要且最困难的一步,因此本文旨在解决重叠、交叉染色体实例分割问题。方法本文基于路径增强网络(PANet)模型,提出AS-PANet(amount segmentation PANet)模型用于解决重叠染色体实例分割问题。在路径增强网络的基础上引入染色体计数领域知识预测作为模型的一个预测分支,并改进了路径增强网络的模型结构和损失函数,使图像分类、目标检测、实例分割和染色体计数4个子任务共享卷积特征,进行联合训练。在临床染色体图像数据上进行标注并构建训练集和测试集,同时提出有效的数据增广方法用以扩充染色体标注训练数据集,提升模型的训练效果。结果在临床染色体数据集中开展实证研究实验。实验结果表明,本文方法在临床染色体数据集中,平均分割精度mAP(mean average precision)为90.63%。该结果比PANet提升了1.18%,比基线模型Mask R-CNN提升了2.85%。分割准确率为85%,相比PANet提升了2%,相比Mask R-CNN(region with convolutional neural network)提升3.75%。结论本文染色体实例分割方法能够更有效地解决临床染色体分割问题,相比现有的方法,分割效果更好。 展开更多
关键词 AS-PANet 路径增强网络 染色体分割 实例分割 染色体核型分析
原文传递
基于改进深度网络的钢材表面缺陷检测 被引量:7
3
作者 刘琪 雷景生 《计算机工程与设计》 北大核心 2022年第9期2654-2661,共8页
为解决传统的采用人工方法进行钢材表面缺陷检测存在错检、漏检、精度低等问题,提出一种改进Faster RCNN的钢材表面缺陷检测算法。使用融合残差网路和密集连接网络的DPN网络进行特征提取,提出改进PANet网络进行多尺度特征融合;使用CIoU... 为解决传统的采用人工方法进行钢材表面缺陷检测存在错检、漏检、精度低等问题,提出一种改进Faster RCNN的钢材表面缺陷检测算法。使用融合残差网路和密集连接网络的DPN网络进行特征提取,提出改进PANet网络进行多尺度特征融合;使用CIoU损失函数替代原算法中的Smooth L1作为边框回归损失函数;构建用于模型训练的钢材缺陷数据集。通过对比实验进行分析,实验结果表明,提出方法能够快速、准确地识别和定位钢材表面缺陷。 展开更多
关键词 钢材表面缺陷检测 Faster RCNN模型 路径网络 路径增强网络 交并比损失函数
下载PDF
改进YOLOv5算法的多类苹果叶片病害检测
4
作者 李昱达 吴正平 +3 位作者 孙水发 林淼 伍箴燎 沈虹杜 《中国农机化学报》 北大核心 2024年第12期230-237,F0003,共9页
针对多类苹果叶片病害准确率差异大、检测精度不高的问题,提出一种改进YOLOv5准确判别苹果叶片病害的检测算法(YOLOv5-CSEP)。首先,引入C3Ghost模块替换原YOLOv5主干网络C3模块,减少模型的参数量与计算量;其次,将混合注意力模块C-SAM加... 针对多类苹果叶片病害准确率差异大、检测精度不高的问题,提出一种改进YOLOv5准确判别苹果叶片病害的检测算法(YOLOv5-CSEP)。首先,引入C3Ghost模块替换原YOLOv5主干网络C3模块,减少模型的参数量与计算量;其次,将混合注意力模块C-SAM加入主干网络中,提高主干网络的特征提取能力,在颈部网络中加入CA注意力模块,抑制复杂背景干扰关注目标信息;最后,引入增强型路径聚合网络(E-PANet)充分融合多尺度特征,提升网络对多类苹果叶片病害检测的准确性与鲁棒性。试验表明,改进后算法的各项性能指标均有提升,精确率达到93.2%,平均精度均值mAP@0.5达到87.9%,与原YOLOv5算法相比分别提高3.4%与1.7%,计算量减少11%。 展开更多
关键词 苹果叶片 病害检测 注意力机制 增强路径聚合网络 YOLOv5
下载PDF
基于多尺度与坐标注意力机制的交通标志识别研究
5
作者 胡腾 杨毅强 +2 位作者 邹显迪 孙潇 毛国斌 《齐齐哈尔大学学报(自然科学版)》 2024年第5期8-15,共8页
针对智能交通识别系统需要具备较高的检测速度和识别精度的要求,在YOLOv4-tiny算法的基础上提出一种基于多尺度与坐标注意力机制融合的改进型轻量化YOLOv4-3RSCtiny算法。首先将主干网络中的Resblock_body模块改进为参数量更少的Resblo... 针对智能交通识别系统需要具备较高的检测速度和识别精度的要求,在YOLOv4-tiny算法的基础上提出一种基于多尺度与坐标注意力机制融合的改进型轻量化YOLOv4-3RSCtiny算法。首先将主干网络中的Resblock_body模块改进为参数量更少的ResblockD轻量化模块,用于提高算法的检测速度;其次引入特征金字塔池化网络,丰富深层特征图的空间信息,在预测阶段引入坐标注意力机制,降低背景信息的干扰;最后利用具有多次跨级融合的路径增强特征金字塔网络,提高算法对小型目标物体的识别率。在TT100K数据集上进行测试,实验结果表明,相较于YOLOv4-tiny算法,YOLOv4-3RSCtiny算法具有较高的准确性和较好的实时性。 展开更多
关键词 ResblockD模块 特征金字塔池化网络 路径增强特征金字塔网络 坐标注意力机制
下载PDF
改进的FCOS煤矿井下行人检测算法 被引量:3
6
作者 延晓宇 董立红 +1 位作者 厍向阳 符立梅 《矿业研究与开发》 CAS 北大核心 2022年第4期160-165,共6页
针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金... 针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金字塔结构改进为自上而下和自下而上的路径增强网络,同时利用由两组深度可分离卷积组成的轻量化检测头替换原始FCOS网络的检测头。在试验训练过程中,通过对井下行人检测数据进行尺度和颜色等数据增强来提升模型的泛化能力与鲁棒性。试验结果显示,改进的FCOS可以更好地实现检测精度与速度之间的平衡,该算法在基本不损失精度的情况下,平均精度均值(mean Average Precision)达51.9%,检测速度可以达到100帧/s。 展开更多
关键词 井下行人检测 FCOS目标检测算法 ShuffleNet V2 路径增强网络 数据增强
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部