期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
智能仿生算法在移动机器人路径规划优化中的应用综述 被引量:47
1
作者 于振中 李强 樊启高 《计算机应用研究》 CSCD 北大核心 2019年第11期3210-3219,共10页
随着移动机器人应用领域的扩大和工作环境的复杂化,传统路径规划算法因其自身局限性变得难以满足人们的要求。近年来,智能仿生算法因其群集智慧和生物择优特性而被广泛应用于移动机器人路径规划优化中。首先,按照智能仿生算法仿生机制... 随着移动机器人应用领域的扩大和工作环境的复杂化,传统路径规划算法因其自身局限性变得难以满足人们的要求。近年来,智能仿生算法因其群集智慧和生物择优特性而被广泛应用于移动机器人路径规划优化中。首先,按照智能仿生算法仿生机制的来源,对应用于路径规划优化中的智能仿生算法进行了分类。然后,按照不同的类别,系统的叙述了各种新型智能仿生算法在路径规划优化中取得的最新研究成果,总结了路径规划优化过程中存在的问题以及解决方案,并对算法在路径规划优化中的性能进行了比较分析。最后对智能仿生算法在路径规划优化中的研究方向进行了探讨。 展开更多
关键词 智能仿生算法 仿生机制 移动机器人 路径规划优化 收敛速度 局部最优
下载PDF
基于无人机技术的灭火救援行动路径规划与优化 被引量:2
2
作者 陈彦州隆 裘佳航 《水上安全》 2024年第2期61-63,共3页
随着科技的不断发展,无人机技术逐渐成为灭火救援领域的重要工具。在自然灾害频发和人类活动导致的灾难中,无人机的灵活性和高效性为灭火救援提供了全新的可能性。本研究旨在探讨基于无人机技术的灭火救援行动路径规划,并通过优化算法... 随着科技的不断发展,无人机技术逐渐成为灭火救援领域的重要工具。在自然灾害频发和人类活动导致的灾难中,无人机的灵活性和高效性为灭火救援提供了全新的可能性。本研究旨在探讨基于无人机技术的灭火救援行动路径规划,并通过优化算法提升其效率与精确性。这一研究旨在推动无人机技术在紧急救援中的应用,为人类社会的安全与救援能力的提升贡献力量。 展开更多
关键词 无人机技术 灭火救援行动 路径规划优化
下载PDF
农用小型无人机转弯掉头模式及全区域覆盖下作业路径规划与优化 被引量:13
3
作者 彭孝东 兰玉彬 +3 位作者 胡洁 欧阳帆 肖克辉 高志政 《华南农业大学学报》 CAS CSCD 北大核心 2019年第2期111-117,共7页
【目的】具备自主飞行、航线规划与优化、精准控制与变量作业能力是农用小型无人机(Agricultural smallunmanned aerial vehicle, ASUAV)的发展方向。本研究为ASUAV在全区域覆盖下自主飞行作业前的航线拐点坐标解算、飞行航向、起降点... 【目的】具备自主飞行、航线规划与优化、精准控制与变量作业能力是农用小型无人机(Agricultural smallunmanned aerial vehicle, ASUAV)的发展方向。本研究为ASUAV在全区域覆盖下自主飞行作业前的航线拐点坐标解算、飞行航向、起降点位置以及转弯掉头模式等提供优化选择。【方法】利用基于自主恒速飞行和最小转弯半径约束的无人机转弯掉头策略,分析并设计了任意凸多边形作业区域下无人机的路径规划方法,提出了基于幅宽微变的航线归整法路径规划方案,并对结构化农田区域实现全区域覆盖条件下的路径进行了规划与优化选择。【结果】基于最优转弯掉头模式下的ASUAV全区域覆盖路径规划方法适用于任意凸多边形结构的农田区域,GUI程序在解算地头边界航线拐点坐标的同时能优化选择出效率最高的飞行作业航线。在试验田随机规划出一个面积约为2.7 hm2的不规则凸六边形田块,仿真发现当无人机沿着平行于最长边飞行作业时,其空行行程最短,约为540 m,工作效率也最高,接近90%。【结论】经过优化选择后的ASUAV掉头转弯模式、起降点位置、飞行航向以及解算后航线拐点坐标等可以实现全区域覆盖,研究结果为ASUAV自主飞行作业提供了参考。 展开更多
关键词 农用无人机 转弯掉头 路径规划优化 全区域覆盖 飞行作业
下载PDF
基于ROS平台的导航机器人局部路径规划的研究与优化 被引量:3
4
作者 过佳颖 《现代信息科技》 2022年第5期144-148,共5页
智能机器人的基础功能之一就是自主导航,包括了地图构建和路径规划。基于开源操作系统ROS的机器人,运用启发式搜索A*算法进行全局路径规划。对机器人局部路径规划进行了集中研究,采用DWA算法进行局部实时路径规划,加入基于弹性时间带碰... 智能机器人的基础功能之一就是自主导航,包括了地图构建和路径规划。基于开源操作系统ROS的机器人,运用启发式搜索A*算法进行全局路径规划。对机器人局部路径规划进行了集中研究,采用DWA算法进行局部实时路径规划,加入基于弹性时间带碰撞TEB算法,优化机器人位置和时间间隔变量,通过加权多目标化获取最优的路径规划能力。实验结果证实了TEB算法的规划效果明显优于DWA算法,为移动机器人自动导航功能的优化提供了思路。 展开更多
关键词 ROS 导航机器人 TEB算法 DWA算法 路径规划优化
下载PDF
Hermite三次样条插值的车型机器人路径规划研究 被引量:4
5
作者 彭辉 曾碧 《计算机工程与应用》 CSCD 北大核心 2010年第22期221-224,共4页
针对车型机器人在移动过程中的路障规避和寻找最优路径的问题,提出了一种基于Hermite三次样条的基线平滑路径,作为移动机器人穿越复杂环境的可行路径,并给出了相应的迭代优化算法。该算法在ODE仿真环境下进行了测试,其效果令人满意。
关键词 车型机器人 路径规划优化 Hermite三次样条 迭代优化
下载PDF
基于遗传算法的轮式移动机器人轨迹优化研究
6
作者 彭辉 李治龙 曾碧 《电脑学习》 2010年第4期105-107,共3页
提出了一种基于遗传算法的轨迹优化方法,将移动机器人的运行轨迹分为若干小段,用遗传算法对每个小段进行规划和优化,从而得到移动机器人的整个运行轨迹。可以作为移动机器人轨迹优化的可行路径,并给出了相应的优化算法。
关键词 轮式移动机器人 路径规划优化 收敛速度 遗传算法
下载PDF
Research on global path planning based on ant colony optimization for AUV 被引量:6
7
作者 王宏健 熊伟 《Journal of Marine Science and Application》 2009年第1期58-64,共7页
Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning usi... Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments. 展开更多
关键词 autonomous underwater vehicle (AUV) path planning ant colony optimization pathsmoothing
下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:20
8
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
下载PDF
Optimal path planning method of electric vehicles considering power supply 被引量:5
9
作者 GUO Dong LI Chao-chao +8 位作者 YAN Wei HAO Yu-jiao XU Yi WANG Yu-qiong ZHOU Ying-chao E Wen-juan ZHANG Tong-qing GAO Xing-bang TAN Xiao-chuan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期331-345,共15页
Because of the limitations of electric vehicle(EV)battery technology and relevant supporting facilities,there is a great risk of breakdown of EVs during driving.The resulting driver“range anxiety”greatly affects the... Because of the limitations of electric vehicle(EV)battery technology and relevant supporting facilities,there is a great risk of breakdown of EVs during driving.The resulting driver“range anxiety”greatly affects the travel quality of EVs.These limitations should be overcome to promote the use of EVs.In this study,a method for travel path planning considering EV power supply was developed.First,based on real-time road conditions,a dynamic energy model of EVs was established considering the driving energy and accessory energy.Second,a multi-objective travel path planning model of EVs was constructed considering the power supply,taking the distance,time,energy,and charging cost as the optimization objectives.Finally,taking the actual traffic network of 15 km×15 km area in a city as the research object,the model was simulated and verified in MATLAB based on Dijkstra shortest path algorithm.The simulation results show that compared with the traditional route planning method,the total distance in the proposed optimal route planning method increased by 1.18%,but the energy consumption,charging cost,and driving time decreased by 11.62%,41.26%and 11.00%,respectively,thus effectively reducing the travel cost of EVs and improving the driving quality of EVs. 展开更多
关键词 electric vehicle vehicle special power charging path multi-objective optimization Dijkstra algorithm
下载PDF
Mobile robot path planning method combined improved artificial potential field with optimization algorithm 被引量:1
10
作者 赵杰 Yu Zhenzhong Yan Jihong Gao Yongsheng Chen Zhifeng 《High Technology Letters》 EI CAS 2011年第2期160-165,共6页
To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method ... To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment. 展开更多
关键词 trust region optimization algorithm path planning artificial potential field mobile robot potential field intensity
下载PDF
Global path planning approach based on ant colony optimization algorithm 被引量:6
11
作者 文志强 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第6期707-712,共6页
Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, concepti... Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path. 展开更多
关键词 mobile robot ant colony optimization global path planning PHEROMONE
下载PDF
基于多策略混合人工鱼群算法的移动机器人路径规划 被引量:17
12
作者 黄宜庆 彭凯 袁梦茹 《信息与控制》 CSCD 北大核心 2017年第3期283-288,共6页
针对移动机器人的路径规划问题,提出了一种基于多策略混合人工鱼群算法的路径规划方法(MH-AFSA).为了提高传统人工鱼群算法(AFSA)的收敛速度和全局搜索能力,引入多策略混合机制,利用加权平均距离策略,扩大了人工鱼的视野范围.采用对数... 针对移动机器人的路径规划问题,提出了一种基于多策略混合人工鱼群算法的路径规划方法(MH-AFSA).为了提高传统人工鱼群算法(AFSA)的收敛速度和全局搜索能力,引入多策略混合机制,利用加权平均距离策略,扩大了人工鱼的视野范围.采用对数函数作为步长的移动因子,克服了传统固定步长的缺陷.进一步利用高斯变异策略扩大了种群的多样性.通过经典函数优化和旅行商问题(TSP)测试了算法的性能.最后,建立移动机器人的环境模型,给出了基于多策略混合人工鱼群算法的移动机器人路径规划步骤.通过数值仿真说明了所提算法的优越性和有效性. 展开更多
关键词 人工鱼群算法移动机器人函数优化旅行商问题路径规划
原文传递
Path planning of unmanned aerial vehicle based on improved gravitational search algorithm 被引量:20
13
作者 LI Pei DUAN HaiBin 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第10期2712-2719,共8页
Path planning of Uninhabited Aerial Vehicle(UAV) is a complicated global optimum problem.In the paper,an improved Gravitational Search Algorithm(GSA) was proposed to solve the path planning problem.Gravitational Searc... Path planning of Uninhabited Aerial Vehicle(UAV) is a complicated global optimum problem.In the paper,an improved Gravitational Search Algorithm(GSA) was proposed to solve the path planning problem.Gravitational Search Algorithm(GSA) is a newly presented under the inspiration of the Newtonian gravity,and it is easy to fall local best.On the basis of introducing the idea of memory and social information of Particle Swarm Optimization(PSO),a novel moving strategy in the searching space was designed,which can improve the quality of the optimal solution.Subsequently,a weighted value was assigned to inertia mass of every agent in each iteration process to accelerate the convergence speed of the search.Particle position was updated according to the selection rules of survival of the fittest.In this way,the population is always moving in the direction of the optimal solution.The feasibility and effectiveness of our improved GSA approach was verified by comparative experimental results with PSO,basic GSA and two other GSA models. 展开更多
关键词 uninhabited aerial vehicle path planning gravitational search algorithm social information weighted value selection rules
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部