目的以桂枝茯苓胶囊(Guizhi Fuling Capsules,GFC)和天舒胶囊(Tianshu Capsule,TC)为研究对象,将近红外光谱(near-infrared spectroscopy,NIRS)技术与机器学习算法结合,建立快速检测2种制剂中间体水分的方法。方法采集GFC总混颗粒和TC...目的以桂枝茯苓胶囊(Guizhi Fuling Capsules,GFC)和天舒胶囊(Tianshu Capsule,TC)为研究对象,将近红外光谱(near-infrared spectroscopy,NIRS)技术与机器学习算法结合,建立快速检测2种制剂中间体水分的方法。方法采集GFC总混颗粒和TC总混颗粒的NIRS,考察不同的预处理方法、变量筛选方法及算法对模型的影响,筛选最佳建模条件,并对2种中间体建立1个水分NIRS通用定量模型。结果对同一中间体建立定量模型时,广义路径追踪(generalized path seeker,GPS)算法均优于偏最小二乘(partial least square,PLS)算法;GPS通用模型与PLS通用模型相比,预测性能更高,验证集相对偏差(relative standard errors of prediction,RSEP)由3.17%降至3.03%,性能偏差比(ratio of performance to deviation,RPD)由4.83升至5.05,可用于水分的预测,且与独立模型的预测性能相差不大。结论GPS算法结合NIRS技术建立的通用定量模型,可快速、准确地检测2种制剂中间体的水分。展开更多
目的比较不同算法对桂枝茯苓胶囊内容物吸湿性预测模型性能的影响,确定最优建模算法。方法以54个物理性质参数为输入,胶囊内容物吸湿性为输出,对比偏最小二乘算法(partial least squares,PLS)、决策树算法(classification and regressio...目的比较不同算法对桂枝茯苓胶囊内容物吸湿性预测模型性能的影响,确定最优建模算法。方法以54个物理性质参数为输入,胶囊内容物吸湿性为输出,对比偏最小二乘算法(partial least squares,PLS)、决策树算法(classification and regression tree,CART)、多元自适应回归样条算法(multivariate adaptive regression splines,MARS)和广义路径追踪算法(generalized path seeker,GPS)对建立吸湿性预测模型性能的影响。结果MARS算法建立的预测模型性能最佳,预测能力最强,模型的校正集决定系数(R2c)为0.843,预测集决定系数(R2p)为0.808,校正集均方根误差(root mean square error of calibration,RMSEC)为0.391,预测集均方根误差(root mean square error of prediction,RMSEP)为0.472,平均相对预测误差为2.69%,小于5%。结论MARS算法建立的吸湿性预测模型更适合桂枝茯苓胶囊的生产应用,该算法可嵌入在线控制系统,为生产过程的质量控制智能化提供技术支持。展开更多
文摘目的以桂枝茯苓胶囊(Guizhi Fuling Capsules,GFC)和天舒胶囊(Tianshu Capsule,TC)为研究对象,将近红外光谱(near-infrared spectroscopy,NIRS)技术与机器学习算法结合,建立快速检测2种制剂中间体水分的方法。方法采集GFC总混颗粒和TC总混颗粒的NIRS,考察不同的预处理方法、变量筛选方法及算法对模型的影响,筛选最佳建模条件,并对2种中间体建立1个水分NIRS通用定量模型。结果对同一中间体建立定量模型时,广义路径追踪(generalized path seeker,GPS)算法均优于偏最小二乘(partial least square,PLS)算法;GPS通用模型与PLS通用模型相比,预测性能更高,验证集相对偏差(relative standard errors of prediction,RSEP)由3.17%降至3.03%,性能偏差比(ratio of performance to deviation,RPD)由4.83升至5.05,可用于水分的预测,且与独立模型的预测性能相差不大。结论GPS算法结合NIRS技术建立的通用定量模型,可快速、准确地检测2种制剂中间体的水分。
文摘目的比较不同算法对桂枝茯苓胶囊内容物吸湿性预测模型性能的影响,确定最优建模算法。方法以54个物理性质参数为输入,胶囊内容物吸湿性为输出,对比偏最小二乘算法(partial least squares,PLS)、决策树算法(classification and regression tree,CART)、多元自适应回归样条算法(multivariate adaptive regression splines,MARS)和广义路径追踪算法(generalized path seeker,GPS)对建立吸湿性预测模型性能的影响。结果MARS算法建立的预测模型性能最佳,预测能力最强,模型的校正集决定系数(R2c)为0.843,预测集决定系数(R2p)为0.808,校正集均方根误差(root mean square error of calibration,RMSEC)为0.391,预测集均方根误差(root mean square error of prediction,RMSEP)为0.472,平均相对预测误差为2.69%,小于5%。结论MARS算法建立的吸湿性预测模型更适合桂枝茯苓胶囊的生产应用,该算法可嵌入在线控制系统,为生产过程的质量控制智能化提供技术支持。