Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning usi...Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.展开更多
In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point...In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point and multiple inactive two-node SCEs is put forward. Based on the updated Lagrangian formulation, the geometric nonlinear stiffness matrix of the three-node straight sliding cable dement is deduced. The examples about two-span and three-span continuous cable structures are studied to verify the effectiveness of the derived SCE. Comparing the cable tension of SCE with the existing research results, the calculating results show that the error is less than 1%. The sliding characteristics should be considered in practical engineering because of the obvious difference between the cable tension of the SCE and that of the cable element without considering sliding characteristics.展开更多
Hydroplaning speed can be affected by pavement texture depth,thickness of water film,tire pressure and tread depth.In this study,to understand the influence of pavement texture on the hydroplaning speed,a new lab-scal...Hydroplaning speed can be affected by pavement texture depth,thickness of water film,tire pressure and tread depth.In this study,to understand the influence of pavement texture on the hydroplaning speed,a new lab-scale apparatus has been designed and manufactured.The lack of proportion between linear movement of vehicle shaft and the wheel rotation was found to be a good index to determine hydroplaning threshold.A 5%drop in the ratio of wheel-to-axle rotation has been assumed as an index to determine hydroplaning threshold.Based on the measures,a simplified model was developed that is able to predict the hydroplaning speed depending on pavement's texture characteristics.The results indicated that a 77%increase in mean texture depth cause 9%increase in hydroplaning threshold speed.展开更多
In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding ca...In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions.展开更多
A methodology was proposed for the design of micropiles to increase earth slopes stability. An analytic model based on bearn-colurnn equation and an existing P-y curve method was set up and used to find the shear capa...A methodology was proposed for the design of micropiles to increase earth slopes stability. An analytic model based on bearn-colurnn equation and an existing P-y curve method was set up and used to find the shear capacity of the micropile. Then, a step-by-step design procedure for stabilization of earth slope with rnicropiles was introduced, involving six main steps: 1) Choosing a location for the rnicropiles within the existing slope; 2) Selecting micropile cross section; 3) Estimating length of rnicropile; 4) Evaluating shear capacity of mieropiles; 5) Calculating spacing required to provide force to stabilize the slope; 6) Designing the concrete cap beam. The application of the method to an embankment landslide in Qinghai Province was described in detail. In the final design, three rows of rnicropiles were adopted as a group and a total of 126 rnicropiles with 0.23 m in diameter were used. The micropile length ranged between 15 and 18 m, with the spacing 1.5 m at in-row direction. The monitoring data indicate that slope movement has been effectively controlled as a result of the slope stabilization measure, which verifies the reasonability of the design method.展开更多
In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A mu...In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A multi-scale ant colony planning method for the lunar robot is designed to meet the requirements of large scale and complex terrain in lunar space.In the algorithm,the actual lunar surface image is meshed into a gird map,the path planning algorithm is modeled on it,and then the actual path is projected to the original lunar surface and mission.The classical ant colony planning algorithm is rewritten utilizing a multi-scale method to address the diverse task problem.Moreover,the path smoothness is also considered to reduce the magnitude of the steering angle.Finally,several typical conditions to verify the efficiency and feasibility of the proposed algorithm are presented.展开更多
基金Supported by State Key Laboratory of Robotics and System (HIT) under Grant No.SKLRS200706the Heilongjiang Scientific Research Foundation for Postdoctoral Financial Assistance under Grant No.323630221the Project of Harbin Technological Talent Research Foundation under Grant No.RC2006QN009015
文摘Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.
基金The National Natural Science Foundation of China (No.51308193)China Postdoctoral Science Foundation (No.20110491342)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No.1101018C)the Science and Technology Project of State Grid Corporation of China(No.SGKJ[2007]116)
文摘In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point and multiple inactive two-node SCEs is put forward. Based on the updated Lagrangian formulation, the geometric nonlinear stiffness matrix of the three-node straight sliding cable dement is deduced. The examples about two-span and three-span continuous cable structures are studied to verify the effectiveness of the derived SCE. Comparing the cable tension of SCE with the existing research results, the calculating results show that the error is less than 1%. The sliding characteristics should be considered in practical engineering because of the obvious difference between the cable tension of the SCE and that of the cable element without considering sliding characteristics.
文摘Hydroplaning speed can be affected by pavement texture depth,thickness of water film,tire pressure and tread depth.In this study,to understand the influence of pavement texture on the hydroplaning speed,a new lab-scale apparatus has been designed and manufactured.The lack of proportion between linear movement of vehicle shaft and the wheel rotation was found to be a good index to determine hydroplaning threshold.A 5%drop in the ratio of wheel-to-axle rotation has been assumed as an index to determine hydroplaning threshold.Based on the measures,a simplified model was developed that is able to predict the hydroplaning speed depending on pavement's texture characteristics.The results indicated that a 77%increase in mean texture depth cause 9%increase in hydroplaning threshold speed.
基金Project(51308193)supported by the National Natural Science Foundation of ChinaProject(SGKJ[2007]116)supported by the Science and Technology Program of State Grid Corporation of China
文摘In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions.
基金Projects(51034005,41002090) supported by National Natural Science Foundation of ChinaProject(2011QZ05) supported by the Fundamental Research Funds for the Central Universities,China
文摘A methodology was proposed for the design of micropiles to increase earth slopes stability. An analytic model based on bearn-colurnn equation and an existing P-y curve method was set up and used to find the shear capacity of the micropile. Then, a step-by-step design procedure for stabilization of earth slope with rnicropiles was introduced, involving six main steps: 1) Choosing a location for the rnicropiles within the existing slope; 2) Selecting micropile cross section; 3) Estimating length of rnicropile; 4) Evaluating shear capacity of mieropiles; 5) Calculating spacing required to provide force to stabilize the slope; 6) Designing the concrete cap beam. The application of the method to an embankment landslide in Qinghai Province was described in detail. In the final design, three rows of rnicropiles were adopted as a group and a total of 126 rnicropiles with 0.23 m in diameter were used. The micropile length ranged between 15 and 18 m, with the spacing 1.5 m at in-row direction. The monitoring data indicate that slope movement has been effectively controlled as a result of the slope stabilization measure, which verifies the reasonability of the design method.
基金supported by the National Natural Science Foundations of China(No.11772185)Fundamental Research Funds for the Central Universities(No.3072022JC0202)。
文摘In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A multi-scale ant colony planning method for the lunar robot is designed to meet the requirements of large scale and complex terrain in lunar space.In the algorithm,the actual lunar surface image is meshed into a gird map,the path planning algorithm is modeled on it,and then the actual path is projected to the original lunar surface and mission.The classical ant colony planning algorithm is rewritten utilizing a multi-scale method to address the diverse task problem.Moreover,the path smoothness is also considered to reduce the magnitude of the steering angle.Finally,several typical conditions to verify the efficiency and feasibility of the proposed algorithm are presented.