An efficient parallel global router using random optimization that is independent of net ordering is proposed.Parallel approaches are described and strategies guaranteeing the routing quality are discussed.The wire le...An efficient parallel global router using random optimization that is independent of net ordering is proposed.Parallel approaches are described and strategies guaranteeing the routing quality are discussed.The wire length model is implemented on multiprocessor,which enables the algorithm to approach feasibility of large scale problems.Timing driven model on multiprocessor and wire length model on distributed processors are also presented.The parallel algorithm greatly reduces the run time of routing.The experimental results show good speedups with no degradation of the routing quality.展开更多
Based on a ripped-up and rerouted methodology,a multilayer area detailed router is presented by using simulated evolution technique.A modified maze algorithm is also performed for the single net.
文摘An efficient parallel global router using random optimization that is independent of net ordering is proposed.Parallel approaches are described and strategies guaranteeing the routing quality are discussed.The wire length model is implemented on multiprocessor,which enables the algorithm to approach feasibility of large scale problems.Timing driven model on multiprocessor and wire length model on distributed processors are also presented.The parallel algorithm greatly reduces the run time of routing.The experimental results show good speedups with no degradation of the routing quality.
文摘Based on a ripped-up and rerouted methodology,a multilayer area detailed router is presented by using simulated evolution technique.A modified maze algorithm is also performed for the single net.